StaticIFCInformation Flow Control Type Systems
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From Coq Require Import Strings.String.
From SECF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Arith.EqNat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import Lia.
From SECF Require Export Imp.
From Coq Require Import List. Import ListNotations.
Set Default Goal Selector "!".
Definition FILL_IN_HERE := <{True}>.
From Coq Require Import Strings.String.
From SECF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Arith.EqNat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import Lia.
From SECF Require Export Imp.
From Coq Require Import List. Import ListNotations.
Set Default Goal Selector "!".
Definition FILL_IN_HERE := <{True}>.
Noninterference
Definition label := bool.
Definition public : label := true.
Definition secret : label := false.
Definition pub_vars := total_map label.
Definition public : label := true.
Definition secret : label := false.
Definition pub_vars := total_map label.
A noninterference attacker can only observe the values of public
variables, not of secret ones. We formalize this as a notion of
publicly equivalent states that agree on the values of all
public variables, which are thus indistinguishable to an attacker:
Definition pub_equiv (P : pub_vars) {X:Type} (s1 s2 : total_map X) :=
∀ x:string, P x = true → s1 x = s2 x.
∀ x:string, P x = true → s1 x = s2 x.
For some total map P from variables to Boolean labels,
pub_equiv P is an equivalence relation on states, so reflexive,
symmetric, and transitive.
Lemma pub_equiv_refl : ∀ {X:Type} (P : pub_vars) (s : total_map X),
pub_equiv P s s.
Proof. intros X P s x Hx. reflexivity. Qed.
Lemma pub_equiv_sym : ∀ {X:Type} (P : pub_vars) (s1 s2 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s1.
Proof. unfold pub_equiv. intros X P s1 s2 H x Px. rewrite H; auto. Qed.
Lemma pub_equiv_trans : ∀ {X:Type} (P : pub_vars) (s1 s2 s3 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s3 →
pub_equiv P s1 s3.
Proof. unfold pub_equiv. intros X P s1 s2 s3 H12 H23 x Px.
rewrite H12; try rewrite H23; auto. Qed.
pub_equiv P s s.
Proof. intros X P s x Hx. reflexivity. Qed.
Lemma pub_equiv_sym : ∀ {X:Type} (P : pub_vars) (s1 s2 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s1.
Proof. unfold pub_equiv. intros X P s1 s2 H x Px. rewrite H; auto. Qed.
Lemma pub_equiv_trans : ∀ {X:Type} (P : pub_vars) (s1 s2 s3 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s3 →
pub_equiv P s1 s3.
Proof. unfold pub_equiv. intros X P s1 s2 s3 H12 H23 x Px.
rewrite H12; try rewrite H23; auto. Qed.
Program c is noninterferent if whenever it has two terminating
runs from two publicly equivalent initial states s1 and s2,
the obtained final states s1' and s2' are also publicly equivalent.
Definition noninterferent P c := ∀ s1 s2 s1' s2',
pub_equiv P s1 s2 →
s1 =[ c ]=> s1' →
s2 =[ c ]=> s2' →
pub_equiv P s1' s2'.
pub_equiv P s1 s2 →
s1 =[ c ]=> s1' →
s2 =[ c ]=> s2' →
pub_equiv P s1' s2'.
Intuitively, c is noninterferent when the value of the public
variables in the final state can only depend on the value of
public variables in the initial state, and do not depend on the
initial value of secret variables.
For instance, consider the following command
(taken from Noninterference):
If we assume that variable X is public and variable Y is
secret, we can state noninterference for secure_com as follows:
Definition xpub : pub_vars := (X !-> public; _ !-> secret).
Definition noninterferent_secure_com :=
noninterferent xpub secure_com.
Definition noninterferent_secure_com :=
noninterferent xpub secure_com.
We have already proved that secure_com is indeed noninterferent
both directly using the semantics (in Noninterference) and using
RHL (in RelHoare). Both these proofs were manual though,
while in this chapter we will show how this proof can be done more
syntactically using several information flow control (IFC) type
systems that enforce noninterference for all well-typed programs.
Not all programs are noninterferent though. For instance, a
program that reads the contents of a secret variable and uses that
to change the value of a public variable is unlikely to be
noninterferent. We call this an explicit flow and all our type
systems will prevent all explicit flows.
Here is a program that has an explicit flow, which breaks
noninterference, as we already proved in Noninterference.
Definition insecure_com1 : com :=
<{ X := Y+1; (* <- bad explicit flow! *)
Y := X+Y×2 }>.
Definition interferent_insecure_com1 :=
¬noninterferent xpub insecure_com1.
<{ X := Y+1; (* <- bad explicit flow! *)
Y := X+Y×2 }>.
Definition interferent_insecure_com1 :=
¬noninterferent xpub insecure_com1.
Not all explicit flows break noninterference though. For instance,
the following variant of insecure_com1 is noninterferent even if
it has an explicit flow. The reason for this is that the variable
X is overwritten with public information in a subsequent assignment.
Definition secure_com1' : com :=
<{ X := Y+1; (* <- harmless explicit flow (dead store) *)
X := 42; (* <- X is overwritten afterwards *)
Y := X+Y×2 }>.
<{ X := Y+1; (* <- harmless explicit flow (dead store) *)
X := 42; (* <- X is overwritten afterwards *)
Y := X+Y×2 }>.
Since our IFC type systems will prevent all explicit flows, they
will also reject secure_com1', even if it is secure with respect
to our attacker model for noninterference, in which the attacker
only observes the final values of public variables.
As usual, our type systems will only provide sound syntactic
overapproximations of the semantic property of noninterference.
Explicit flows are not the only way to leak secrets: one can also
leak secrets using the control flow of the program, by branching
on secrets and then assigning to public variables. We call these
leaks implicit flows.
Definition insecure_com2 : com :=
<{ if Y = 0
then Y := 42
else X := X+1 (* <- bad implicit flow! *)
end }>.
<{ if Y = 0
then Y := 42
else X := X+1 (* <- bad implicit flow! *)
end }>.
Here the expression X+1 we are assigning to X is public
information, but we are doing this assignment after we branched on
a secret condition Y = 0, so we are indirectly leaking
information about the value of Y. In this case we can infer that
if X gets incremented the value of Y is not 0. We have
proved in Noninterference that this program is insecure, so it
will be rejected by our type systems, which enforce noninterference
by preventing all implicit flows.
Not all implicit flows break noninterference though. For instance,
in RelHoare we saw a program that we proved to be
noninterferent, even though it contains both an explicit and an
implicit flow:
Definition secure_p2 :=
<{ if Y = 0
then X := Y (* <- harmless explicit flow *)
else X := 0 (* <- harmless implicit flow *)
end }>.
<{ if Y = 0
then X := Y (* <- harmless explicit flow *)
else X := 0 (* <- harmless implicit flow *)
end }>.
Intuitively, even if this program branches on the secret Y, it
always assigns the value 0 to X, so no secret is
leaked. Still, our type systems will reject programs containing
any explicit or implicit flows, this one included. C'est la vie!
We will build a type system that prevents all explicit and
implicit flows.
But first, let's start with something simpler, a type system for
arithmetic expressions: our typing judgement P ⊢a- a \in l
specifies the label l of an arithmetic expression a in terms
of the labels of the variables read it reads.
In particular, P ⊢a- a \in public says that expression a
only reads public variables, so it computes a public value.
P ⊢a- a \in secret says that expression a reads some secret
variable, so it computes a value that may depend on secrets.
Here are some examples:
We need a way to combine the labels of two sub-expressions, which
we call the join (or least upper bound) of the two labels:
Type system for noninterference of expressions
- For a variable X we just look up its label in P, so P ⊢a- X \in P X.
- For a constant n the label is public, so P ⊢a n \in public.
- Given variable X1 with label l1 and variable X2 with label l2, what should be the label of X1 + X2 though?
Combining labels
Definition join (l1 l2 : label) : label := l1 && l2.
Lemma join_commutative : ∀ {l1 l2},
join l1 l2 = join l2 l1.
Proof. intros l1 l2. destruct l1; destruct l2; reflexivity. Qed.
Lemma join_public : ∀ {l1 l2},
join l1 l2 = public → l1 = public ∧ l2 = public.
Proof. apply andb_prop. Qed.
Lemma join_public_l : ∀ {l},
join public l = l.
Proof. reflexivity. Qed.
Lemma join_public_r : ∀ {l},
join l public = l.
Proof. intros l. rewrite join_commutative. reflexivity. Qed.
Lemma join_secret_l : ∀ {l},
join secret l = secret.
Proof. reflexivity. Qed.
Lemma join_commutative : ∀ {l1 l2},
join l1 l2 = join l2 l1.
Proof. intros l1 l2. destruct l1; destruct l2; reflexivity. Qed.
Lemma join_public : ∀ {l1 l2},
join l1 l2 = public → l1 = public ∧ l2 = public.
Proof. apply andb_prop. Qed.
Lemma join_public_l : ∀ {l},
join public l = l.
Proof. reflexivity. Qed.
Lemma join_public_r : ∀ {l},
join l public = l.
Proof. intros l. rewrite join_commutative. reflexivity. Qed.
Lemma join_secret_l : ∀ {l},
join secret l = secret.
Proof. reflexivity. Qed.
(T_Num) | |
P ⊢a- n ∈ public |
(T_Id) | |
P ⊢a- X ∈ P X |
P ⊢a- a1 ∈ l1 P ⊢a- a2 ∈ l2 | (T_Plus) |
P ⊢a- a1+a2 ∈ join l1 l2 |
P ⊢a- a1 ∈ l1 P ⊢a- a2 ∈ l2 | (T_Minus) |
P ⊢a- a1-a2 ∈ join l1 l2 |
P ⊢a- a1 ∈ l1 P ⊢a- a2 ∈ l2 | (T_Mult) |
P ⊢a- a1*a2 ∈ join l1 l2 |
Reserved Notation "P '⊢a-' a ∈ l" (at level 40).
Inductive aexp_has_label (P:pub_vars) : aexp → label → Prop :=
| T_Num : ∀ n,
P ⊢a- (ANum n) \in public
| T_Id : ∀ X,
P ⊢a- (AId X) \in (P X)
| T_Plus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 + a2 }> \in (join l1 l2)
| T_Minus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 - a2 }> \in (join l1 l2)
| T_Mult : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 × a2 }> \in (join l1 l2)
where "P '⊢a-' a '∈' l" := (aexp_has_label P a l).
Fixpoint label_of_aexp (P:pub_vars) (a:aexp) : label :=
match a with
| ANum n ⇒ public
| AId X ⇒ P X
| <{ a1 + a2 }>
| <{ a1 - a2 }>
| <{ a1 × a2 }> ⇒ join (label_of_aexp P a1) (label_of_aexp P a2)
end.
Lemma label_of_aexp_sound : ∀ P a,
P ⊢a- a \in label_of_aexp P a.
Proof. intros P a. induction a; constructor; eauto. Qed.
Lemma label_of_aexp_unique : ∀ P a l,
P ⊢a- a \in l →
l = label_of_aexp P a.
Proof.
intros P a l H. induction H; simpl in *;
(repeat match goal with
| [Heql : _ = _ ⊢ _] ⇒ rewrite Heql in ×
end); eauto.
Qed.
Theorem noninterferent_aexp : ∀ {P s1 s2 a},
pub_equiv P s1 s2 →
P ⊢a- a \in public →
aeval s1 a = aeval s2 a.
Inductive aexp_has_label (P:pub_vars) : aexp → label → Prop :=
| T_Num : ∀ n,
P ⊢a- (ANum n) \in public
| T_Id : ∀ X,
P ⊢a- (AId X) \in (P X)
| T_Plus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 + a2 }> \in (join l1 l2)
| T_Minus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 - a2 }> \in (join l1 l2)
| T_Mult : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 × a2 }> \in (join l1 l2)
where "P '⊢a-' a '∈' l" := (aexp_has_label P a l).
Fixpoint label_of_aexp (P:pub_vars) (a:aexp) : label :=
match a with
| ANum n ⇒ public
| AId X ⇒ P X
| <{ a1 + a2 }>
| <{ a1 - a2 }>
| <{ a1 × a2 }> ⇒ join (label_of_aexp P a1) (label_of_aexp P a2)
end.
Lemma label_of_aexp_sound : ∀ P a,
P ⊢a- a \in label_of_aexp P a.
Proof. intros P a. induction a; constructor; eauto. Qed.
Lemma label_of_aexp_unique : ∀ P a l,
P ⊢a- a \in l →
l = label_of_aexp P a.
Proof.
intros P a l H. induction H; simpl in *;
(repeat match goal with
| [Heql : _ = _ ⊢ _] ⇒ rewrite Heql in ×
end); eauto.
Qed.
Theorem noninterferent_aexp : ∀ {P s1 s2 a},
pub_equiv P s1 s2 →
P ⊢a- a \in public →
aeval s1 a = aeval s2 a.
Proof.
intros P s1 s2 a Heq Ht. remember public as l.
induction Ht; simpl.
- reflexivity.
- apply Heq. apply Heql.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
Qed.
intros P s1 s2 a Heq Ht. remember public as l.
induction Ht; simpl.
- reflexivity.
- apply Heq. apply Heql.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
- destruct (join_public Heql) as [H1 H2].
rewrite (IHHt1 H1). rewrite (IHHt2 H2). reflexivity.
Qed.
(T_True) | |
P ⊢b- true ∈ public |
(T_False) | |
P ⊢b- false ∈ public |
P ⊢a- a1 ∈ l1 P ⊢a- a2 ∈ l2 | (T_Eq) |
P ⊢b- a1=a2 ∈ join l1 l2 |
... | |
P ⊢b- b ∈ l | (T_Not) |
P ⊢b- ~b ∈ l |
P ⊢b- b1 ∈ l1 P ⊢b- b2 ∈ l2 | (T_And) |
P ⊢b- b1&&b2 ∈ join l1 l2 |
Reserved Notation "P '⊢b-' b ∈ l" (at level 40).
Inductive bexp_has_label (P:pub_vars) : bexp → label → Prop :=
| T_True :
P ⊢b- <{ true }> \in public
| T_False :
P ⊢b- <{ false }> \in public
| T_Eq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 = a2 }> \in (join l1 l2)
| T_Neq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≠ a2 }> \in (join l1 l2)
| T_Le : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≤ a2 }> \in (join l1 l2)
| T_Gt : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 > a2 }> \in (join l1 l2)
| T_Not : ∀ b l,
P ⊢b- b \in l →
P ⊢b- <{ ¬b }> \in l
| T_And : ∀ b1 l1 b2 l2,
P ⊢b- b1 \in l1 →
P ⊢b- b2 \in l2 →
P ⊢b- <{ b1 && b2 }> \in (join l1 l2)
where "P '⊢b-' b '∈' l" := (bexp_has_label P b l).
Fixpoint label_of_bexp (P:pub_vars) (a:bexp) : label :=
match a with
| <{ true }> | <{ false }> ⇒ public
| <{ a1 = a2 }>
| <{ a1 ≠ a2 }>
| <{ a1 ≤ a2 }>
| <{ a1 > a2 }> ⇒ join (label_of_aexp P a1) (label_of_aexp P a2)
| <{ ¬b }> ⇒ label_of_bexp P b
| <{ b1 && b2 }> ⇒ join (label_of_bexp P b1) (label_of_bexp P b2)
end.
Lemma label_of_bexp_sound : ∀ P b,
P ⊢b- b \in label_of_bexp P b.
Proof.
intros P b. induction b; constructor;
eauto using label_of_aexp_sound. Qed.
Lemma label_of_bexp_unique : ∀ P b l,
P ⊢b- b \in l →
l = label_of_bexp P b.
Proof.
intros P a l H. induction H; simpl in *;
(repeat match goal with
| [H : _ ⊢a- _ \in _ ⊢ _] ⇒
apply label_of_aexp_unique in H
| [Heql : _ = _ ⊢ _] ⇒ rewrite Heql in ×
end); eauto.
Qed.
Theorem noninterferent_bexp : ∀ {P s1 s2 b},
pub_equiv P s1 s2 →
P ⊢b- b \in public →
beval s1 b = beval s2 b.
Inductive bexp_has_label (P:pub_vars) : bexp → label → Prop :=
| T_True :
P ⊢b- <{ true }> \in public
| T_False :
P ⊢b- <{ false }> \in public
| T_Eq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 = a2 }> \in (join l1 l2)
| T_Neq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≠ a2 }> \in (join l1 l2)
| T_Le : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≤ a2 }> \in (join l1 l2)
| T_Gt : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 > a2 }> \in (join l1 l2)
| T_Not : ∀ b l,
P ⊢b- b \in l →
P ⊢b- <{ ¬b }> \in l
| T_And : ∀ b1 l1 b2 l2,
P ⊢b- b1 \in l1 →
P ⊢b- b2 \in l2 →
P ⊢b- <{ b1 && b2 }> \in (join l1 l2)
where "P '⊢b-' b '∈' l" := (bexp_has_label P b l).
Fixpoint label_of_bexp (P:pub_vars) (a:bexp) : label :=
match a with
| <{ true }> | <{ false }> ⇒ public
| <{ a1 = a2 }>
| <{ a1 ≠ a2 }>
| <{ a1 ≤ a2 }>
| <{ a1 > a2 }> ⇒ join (label_of_aexp P a1) (label_of_aexp P a2)
| <{ ¬b }> ⇒ label_of_bexp P b
| <{ b1 && b2 }> ⇒ join (label_of_bexp P b1) (label_of_bexp P b2)
end.
Lemma label_of_bexp_sound : ∀ P b,
P ⊢b- b \in label_of_bexp P b.
Proof.
intros P b. induction b; constructor;
eauto using label_of_aexp_sound. Qed.
Lemma label_of_bexp_unique : ∀ P b l,
P ⊢b- b \in l →
l = label_of_bexp P b.
Proof.
intros P a l H. induction H; simpl in *;
(repeat match goal with
| [H : _ ⊢a- _ \in _ ⊢ _] ⇒
apply label_of_aexp_unique in H
| [Heql : _ = _ ⊢ _] ⇒ rewrite Heql in ×
end); eauto.
Qed.
Theorem noninterferent_bexp : ∀ {P s1 s2 b},
pub_equiv P s1 s2 →
P ⊢b- b \in public →
beval s1 b = beval s2 b.
Proof.
intros P s1 s2 b Heq Ht. remember public as l.
induction Ht; simpl; try reflexivity;
try (destruct (join_public Heql) as [H1 H2];
rewrite H1 in *; rewrite H2 in *).
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (IHHt Heql). reflexivity.
- rewrite (IHHt1 Logic.eq_refl).
rewrite (IHHt2 Logic.eq_refl). reflexivity.
Qed.
intros P s1 s2 b Heq Ht. remember public as l.
induction Ht; simpl; try reflexivity;
try (destruct (join_public Heql) as [H1 H2];
rewrite H1 in *; rewrite H2 in *).
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (noninterferent_aexp Heq H).
rewrite (noninterferent_aexp Heq H0).
reflexivity.
- rewrite (IHHt Heql). reflexivity.
- rewrite (IHHt1 Logic.eq_refl).
rewrite (IHHt2 Logic.eq_refl). reflexivity.
Qed.
Restrictive type system prohibiting branching on secrets
In particular, we disallow the value of secret expressions to be
assigned to public variables.
We allow public information to flow everywhere, and secret
information to flow to secret variables:
Lemma can_flow_public : ∀ l, can_flow public l = true.
Lemma can_flow_refl : ∀ l,
can_flow l l = true.
Proof. intros [|]; reflexivity. Qed.
Lemma can_flow_trans : ∀ l1 l2 l3,
can_flow l1 l2 = true →
can_flow l2 l3 = true →
can_flow l1 l3 = true.
Proof. intros l1 l2 l3 H12 H23.
destruct l1; destruct l2; simpl in *; auto. discriminate H12. Qed.
Lemma can_flow_join_1 : ∀ l1 l2 l,
can_flow (join l1 l2) l = true →
can_flow l1 l = true.
Proof. intros l1 l2 l. destruct l1; [reflexivity | auto ]. Qed.
Lemma can_flow_join_2 : ∀ l1 l2 l,
can_flow (join l1 l2) l = true →
can_flow l2 l = true.
Proof. intros l1 l2 l. destruct l1; auto. destruct l2; auto. Qed.
Lemma can_flow_join_l : ∀ l1 l2 l,
can_flow l1 l = true →
can_flow l2 l = true →
can_flow (join l1 l2) l = true.
Proof. intros l1 l2 l H1 H2. destruct l1; simpl in *; auto. Qed.
Lemma can_flow_join_r1 : ∀ l l1 l2,
can_flow l l1 = true →
can_flow l (join l1 l2) = true.
Proof. intros l l1 l2 H. destruct l; destruct l1; simpl in *; auto.
discriminate H. Qed.
Lemma can_flow_join_r2 : ∀ l l1 l2,
can_flow l l2 = true →
can_flow l (join l1 l2) = true.
Proof. intros l l1 l2 H. destruct l; destruct l1; simpl in *; auto. Qed.
Proof. reflexivity. Qed.
Lemma can_flow_secret : can_flow secret secret = true.
Proof. reflexivity. Qed.
Lemma can_flow_refl : ∀ l,
can_flow l l = true.
Proof. intros [|]; reflexivity. Qed.
Lemma can_flow_trans : ∀ l1 l2 l3,
can_flow l1 l2 = true →
can_flow l2 l3 = true →
can_flow l1 l3 = true.
Proof. intros l1 l2 l3 H12 H23.
destruct l1; destruct l2; simpl in *; auto. discriminate H12. Qed.
Lemma can_flow_join_1 : ∀ l1 l2 l,
can_flow (join l1 l2) l = true →
can_flow l1 l = true.
Proof. intros l1 l2 l. destruct l1; [reflexivity | auto ]. Qed.
Lemma can_flow_join_2 : ∀ l1 l2 l,
can_flow (join l1 l2) l = true →
can_flow l2 l = true.
Proof. intros l1 l2 l. destruct l1; auto. destruct l2; auto. Qed.
Lemma can_flow_join_l : ∀ l1 l2 l,
can_flow l1 l = true →
can_flow l2 l = true →
can_flow (join l1 l2) l = true.
Proof. intros l1 l2 l H1 H2. destruct l1; simpl in *; auto. Qed.
Lemma can_flow_join_r1 : ∀ l l1 l2,
can_flow l l1 = true →
can_flow l (join l1 l2) = true.
Proof. intros l l1 l2 H. destruct l; destruct l1; simpl in *; auto.
discriminate H. Qed.
Lemma can_flow_join_r2 : ∀ l l1 l2,
can_flow l l2 = true →
can_flow l (join l1 l2) = true.
Proof. intros l l1 l2 H. destruct l; destruct l1; simpl in *; auto. Qed.
(PCWT_Skip) | |
P ⊢pc- skip |
P ⊢a- a ∈ l can_flow l (P X) = true | (PCWT_Asgn) |
P ⊢pc- X := a |
P ⊢pc- c1 P ⊢pc- c2 | (PCWT_Seq) |
P ⊢pc- c1;c2 |
P ⊢b- b ∈ public P ⊢pc- c1 P ⊢pc- c2 | (PCWT_If) |
P ⊢pc- if b then c1 else c2 |
P ⊢b- b ∈ public P ⊢pc- c | (PCWT_While) |
P ⊢pc- while b then c end |
Reserved Notation "P '⊢pc-' c" (at level 40).
Inductive pc_well_typed (P:pub_vars) : com → Prop :=
| PCWT_Com :
P ⊢pc- <{ skip }>
| PCWT_Asgn : ∀ X a l,
P ⊢a- a \in l →
can_flow l (P X) = true →
P ⊢pc- <{ X := a }>
| PCWT_Seq : ∀ c1 c2,
P ⊢pc- c1 →
P ⊢pc- c2 →
P ⊢pc- <{ c1 ; c2 }>
| PCWT_If : ∀ b c1 c2,
P ⊢b- b \in public →
P ⊢pc- c1 →
P ⊢pc- c2 →
P ⊢pc- <{ if b then c1 else c2 end }>
| PCWT_While : ∀ b c1,
P ⊢b- b \in public →
P ⊢pc- c1 →
P ⊢pc- <{ while b do c1 end }>
where "P '⊢pc-' c" := (pc_well_typed P c).
Fixpoint pc_typechecker (P:pub_vars) (c:com) : bool :=
match c with
| <{ skip }> ⇒ true
| <{ X := a }> ⇒ can_flow (label_of_aexp P a) (P X)
| <{ c1 ; c2 }> ⇒ pc_typechecker P c1 && pc_typechecker P c2
| <{ if b then c1 else c2 end }> ⇒
Bool.eqb (label_of_bexp P b) public &&
pc_typechecker P c1 && pc_typechecker P c2
| <{ while b do c1 end }> ⇒
Bool.eqb (label_of_bexp P b) public && pc_typechecker P c1
end.
Lemma pc_typechecker_sound : ∀ P c,
pc_typechecker P c = true →
P ⊢pc- c.
Lemma pc_typechecker_complete : ∀ P c,
pc_typechecker P c = false →
¬P ⊢pc- c.
Inductive pc_well_typed (P:pub_vars) : com → Prop :=
| PCWT_Com :
P ⊢pc- <{ skip }>
| PCWT_Asgn : ∀ X a l,
P ⊢a- a \in l →
can_flow l (P X) = true →
P ⊢pc- <{ X := a }>
| PCWT_Seq : ∀ c1 c2,
P ⊢pc- c1 →
P ⊢pc- c2 →
P ⊢pc- <{ c1 ; c2 }>
| PCWT_If : ∀ b c1 c2,
P ⊢b- b \in public →
P ⊢pc- c1 →
P ⊢pc- c2 →
P ⊢pc- <{ if b then c1 else c2 end }>
| PCWT_While : ∀ b c1,
P ⊢b- b \in public →
P ⊢pc- c1 →
P ⊢pc- <{ while b do c1 end }>
where "P '⊢pc-' c" := (pc_well_typed P c).
Fixpoint pc_typechecker (P:pub_vars) (c:com) : bool :=
match c with
| <{ skip }> ⇒ true
| <{ X := a }> ⇒ can_flow (label_of_aexp P a) (P X)
| <{ c1 ; c2 }> ⇒ pc_typechecker P c1 && pc_typechecker P c2
| <{ if b then c1 else c2 end }> ⇒
Bool.eqb (label_of_bexp P b) public &&
pc_typechecker P c1 && pc_typechecker P c2
| <{ while b do c1 end }> ⇒
Bool.eqb (label_of_bexp P b) public && pc_typechecker P c1
end.
Lemma pc_typechecker_sound : ∀ P c,
pc_typechecker P c = true →
P ⊢pc- c.
Proof.
intros P c. induction c; simpl in *; econstructor;
try rewrite andb_true_iff in *; try tauto;
eauto using label_of_aexp_sound, label_of_bexp_sound.
- destruct H as [H1 H2]. rewrite andb_true_iff in H1; try tauto.
destruct H1 as [H11 H12]. apply Bool.eqb_prop in H11.
rewrite <- H11. apply label_of_bexp_sound.
- destruct H as [H1 H2]. rewrite andb_true_iff in H1; tauto.
- destruct H as [H1 H2]. apply Bool.eqb_prop in H1.
rewrite <- H1. apply label_of_bexp_sound.
Qed.
intros P c. induction c; simpl in *; econstructor;
try rewrite andb_true_iff in *; try tauto;
eauto using label_of_aexp_sound, label_of_bexp_sound.
- destruct H as [H1 H2]. rewrite andb_true_iff in H1; try tauto.
destruct H1 as [H11 H12]. apply Bool.eqb_prop in H11.
rewrite <- H11. apply label_of_bexp_sound.
- destruct H as [H1 H2]. rewrite andb_true_iff in H1; tauto.
- destruct H as [H1 H2]. apply Bool.eqb_prop in H1.
rewrite <- H1. apply label_of_bexp_sound.
Qed.
Lemma pc_typechecker_complete : ∀ P c,
pc_typechecker P c = false →
¬P ⊢pc- c.
Proof.
intros P c H Hc. induction Hc; simpl in *;
try rewrite andb_false_iff in *;
try tauto; try congruence.
- apply label_of_aexp_unique in H0.
rewrite H0 in ×. congruence.
- destruct H; eauto. rewrite andb_false_iff in H.
destruct H; eauto. rewrite eqb_false_iff in H.
apply label_of_bexp_unique in H0. congruence.
- destruct H; eauto. rewrite eqb_false_iff in H.
apply label_of_bexp_unique in H0. congruence.
Qed.
intros P c H Hc. induction Hc; simpl in *;
try rewrite andb_false_iff in *;
try tauto; try congruence.
- apply label_of_aexp_unique in H0.
rewrite H0 in ×. congruence.
- destruct H; eauto. rewrite andb_false_iff in H.
destruct H; eauto. rewrite eqb_false_iff in H.
apply label_of_bexp_unique in H0. congruence.
- destruct H; eauto. rewrite eqb_false_iff in H.
apply label_of_bexp_unique in H0. congruence.
Qed.
Example swt_secure_com :
xpub ⊢pc- <{ X := X+1; (* check: can_flow public public (OK!) *)
Y := X+Y×2 (* check: can_flow secret secret (OK!) *)
}>.
Proof. apply pc_typechecker_sound. reflexivity. Qed.
xpub ⊢pc- <{ X := X+1; (* check: can_flow public public (OK!) *)
Y := X+Y×2 (* check: can_flow secret secret (OK!) *)
}>.
Proof. apply pc_typechecker_sound. reflexivity. Qed.
Example not_swt_insecure_com1 :
¬ xpub ⊢pc- <{ X := Y+1; (* check: can_flow secret public (FAILS!) *)
Y := X+Y×2 (* check: can_flow secret secret (OK!) *)
}>.
Proof. apply pc_typechecker_complete. reflexivity. Qed.
¬ xpub ⊢pc- <{ X := Y+1; (* check: can_flow secret public (FAILS!) *)
Y := X+Y×2 (* check: can_flow secret secret (OK!) *)
}>.
Proof. apply pc_typechecker_complete. reflexivity. Qed.
Example not_swt_insecure_com2 :
¬ xpub ⊢pc- <{ if Y=0 (* check: P ⊢b- Y=0 ∈ public (FAILS!) *)
then Y := 42
else X := X+1 (* <- bad implicit flow! *)
end }>.
Proof. apply pc_typechecker_complete. reflexivity. Qed.
¬ xpub ⊢pc- <{ if Y=0 (* check: P ⊢b- Y=0 ∈ public (FAILS!) *)
then Y := 42
else X := X+1 (* <- bad implicit flow! *)
end }>.
Proof. apply pc_typechecker_complete. reflexivity. Qed.
We show that pc_well_typed commands are noninterferent.
Theorem pc_well_typed_noninterferent : ∀ P c,
P ⊢pc- c →
noninterferent P c.
P ⊢pc- c →
noninterferent P c.
Proof.
intros P c Hwt s1 s2 s1' s2' Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
induction Heval1; intros s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- assumption.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
unfold can_flow in H8. apply orb_prop in H8. destruct H8 as [Hl | Hx].
× rewrite Hl in ×. apply (noninterferent_aexp Heq H7).
× subst. rewrite Hy in Hx. discriminate Hx.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
- eapply IHHeval1; eassumption.
- rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H5. discriminate H5.
- rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H5. discriminate H5.
- eapply IHHeval1; eassumption.
- assumption.
- rewrite (noninterferent_bexp Heq H9) in H.
rewrite H in H2. discriminate H2.
- rewrite (noninterferent_bexp Heq H7) in H.
rewrite H in H4. discriminate H4.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
Qed.
intros P c Hwt s1 s2 s1' s2' Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
induction Heval1; intros s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- assumption.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
unfold can_flow in H8. apply orb_prop in H8. destruct H8 as [Hl | Hx].
× rewrite Hl in ×. apply (noninterferent_aexp Heq H7).
× subst. rewrite Hy in Hx. discriminate Hx.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
- eapply IHHeval1; eassumption.
- rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H5. discriminate H5.
- rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H5. discriminate H5.
- eapply IHHeval1; eassumption.
- assumption.
- rewrite (noninterferent_bexp Heq H9) in H.
rewrite H in H2. discriminate H2.
- rewrite (noninterferent_bexp Heq H7) in H.
rewrite H in H4. discriminate H4.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
Qed.
Remember the definition of noninterferent is as follows:
The main intuition is that the two executions will proceed "in
lockstep", because all the branch conditions are enforced to be
public, so they will execute to the same Boolean in both executions.
The proof is by induction on s1 =[ c ]=> s1' and inversion
on s2 =[ c ]=> s2' and P ⊢pc- c. Here is a sketch of the two
most interesting cases:
While we have just proved that pc_well_typed implies
noninterference, this is too strong a restriction for just
noninterference. For instance, the following program contains no
explicit flows and no implicit flows, so it is intuitively
noninterferent, yet it is still rejected by the type system just
because it branches on a secret:
forall s1 s2 s1' s2', pub_equiv P s1 s2 -> s1 =[ c ]=> s1' -> s2 =[ c ]=> s2' -> pub_equiv P s1' s2'.
- In the conditional case we have that c is if b then c1 else c2,
P ⊢pc- c1, P ⊢pc- c2, and P ⊢b- b \in public. Given this
last fact we can apply noninterference of boolean expressions to
show that beval st1 b = beval st2 b. If they are both true,
we use the induction hypothesis for c1, and if they are both
false we use the induction hypothesis for c2 to conclude.
- In the assignment case we have that c is X := a,
P ⊢a- a \in l, and can_flow l (P X) = true, which expands out
to l == public ∨ P X == secret.
pc_well_typed too strong for noninterference
Example not_swt_noninterferent_com :
¬ xpub ⊢pc- <{ if Y=0 (* check: P ⊢b- Y=0 ∈ public (fails!) *)
then Z := 0
else skip
end }>.
Example not_swt_noninterferent_com_is_noninterferent:
noninterferent xpub <{ if Y=0
then Z := 0
else skip
end }>.
¬ xpub ⊢pc- <{ if Y=0 (* check: P ⊢b- Y=0 ∈ public (fails!) *)
then Z := 0
else skip
end }>.
Proof.
intros contra.
inversion contra; subst; clear contra.
inversion H2; subst; clear H2.
destruct l1, l2; simpl in H1; try discriminate.
inversion H5.
Qed.
intros contra.
inversion contra; subst; clear contra.
inversion H2; subst; clear H2.
destruct l1, l2; simpl in H1; try discriminate.
inversion H5.
Qed.
Example not_swt_noninterferent_com_is_noninterferent:
noninterferent xpub <{ if Y=0
then Z := 0
else skip
end }>.
Proof.
unfold noninterferent.
intros s1 s2 s1' s2' H red1 red2.
inversion red1; inversion red2; subst; clear red1 red2.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px. eapply H; eauto.
Qed.
unfold noninterferent.
intros s1 s2 s1' s2' H red1 red2.
inversion red1; inversion red2; subst; clear red1 red2.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px.
destruct (String.eqb_spec x Z); subst.
+ discriminate.
+ rewrite !t_update_neq; auto.
- inversion H6; subst; clear H6.
inversion H13; subst; clear H13.
intros x Px. eapply H; eauto.
Qed.
We will later show that pc_well_typed enforces a security
notion called program counter security, which prevents some
side-channel attacks and which also serves as the base for
cryptographic constant-time.
We now instead extend this to a more permissive type system for
noninterference in which we do allow branching on secrets.
Now to prevent implicit flows we need to track whether we have
branched on secrets. We do this with a program counter (pc)
label, which records the labels of the branches we have taken at
the current point in the execution (joined together).
IFC type system allowing branching on secrets
(WT_Skip) | |
P ;; pc |-- skip |
P ⊢a- a ∈ l can_flow (join pc l) (P X) = true | (WT_Asgn) |
P ;; pc |-- X := a |
P ;; pc |-- c1 P ;; pc |-- c2 | (WT_Seq) |
P ;; pc |-- c1;c2 |
P ⊢b- b ∈ l P ;; join pc l |-- c1 | |
P ;; join pc l |-- c2 | (WT_If) |
P ;; pc |-- if b then c1 else c2 |
P ⊢b- b ∈ l P ;; join pc l |-- c | (WT_While) |
P ;; pc |-- while b then c end |
Reserved Notation "P ';;' pc '|--' c" (at level 40).
Inductive well_typed (P:pub_vars) : label → com → Prop :=
| WT_Com : ∀ pc,
P ;; pc |-- <{ skip }>
| WT_Asgn : ∀ pc X a l,
P ⊢a- a \in l →
can_flow (join pc l) (P X) = true →
P ;; pc |-- <{ X := a }>
| WT_Seq : ∀ pc c1 c2,
P ;; pc |-- c1 →
P ;; pc |-- c2 →
P ;; pc |-- <{ c1 ; c2 }>
| WT_If : ∀ pc b l c1 c2,
P ⊢b- b \in l →
P ;; (join pc l) |-- c1 →
P ;; (join pc l) |-- c2 →
P ;; pc |-- <{ if b then c1 else c2 end }>
| WT_While : ∀ pc b l c1,
P ⊢b- b \in l →
P ;; (join pc l) |-- c1 →
P ;; pc |-- <{ while b do c1 end }>
where "P ';;' pc '|--' c" := (well_typed P pc c).
Fixpoint wt_typechecker (P:pub_vars) (pc:label) (c:com) : bool :=
match c with
| <{ skip }> ⇒ true
| <{ X := a }> ⇒ can_flow (join pc (label_of_aexp P a)) (P X)
| <{ c1 ; c2 }> ⇒ wt_typechecker P pc c1 && wt_typechecker P pc c2
| <{ if b then c1 else c2 end }> ⇒
wt_typechecker P (join pc (label_of_bexp P b)) c1 &&
wt_typechecker P (join pc (label_of_bexp P b)) c2
| <{ while b do c1 end }> ⇒
wt_typechecker P (join pc (label_of_bexp P b)) c1
end.
Lemma wt_typechecker_sound : ∀ P pc c,
wt_typechecker P pc c = true →
P ;; pc |-- c.
Lemma wt_typechecker_complete : ∀ P pc c,
wt_typechecker P pc c = false →
¬ P ;; pc |-- c.
Inductive well_typed (P:pub_vars) : label → com → Prop :=
| WT_Com : ∀ pc,
P ;; pc |-- <{ skip }>
| WT_Asgn : ∀ pc X a l,
P ⊢a- a \in l →
can_flow (join pc l) (P X) = true →
P ;; pc |-- <{ X := a }>
| WT_Seq : ∀ pc c1 c2,
P ;; pc |-- c1 →
P ;; pc |-- c2 →
P ;; pc |-- <{ c1 ; c2 }>
| WT_If : ∀ pc b l c1 c2,
P ⊢b- b \in l →
P ;; (join pc l) |-- c1 →
P ;; (join pc l) |-- c2 →
P ;; pc |-- <{ if b then c1 else c2 end }>
| WT_While : ∀ pc b l c1,
P ⊢b- b \in l →
P ;; (join pc l) |-- c1 →
P ;; pc |-- <{ while b do c1 end }>
where "P ';;' pc '|--' c" := (well_typed P pc c).
Fixpoint wt_typechecker (P:pub_vars) (pc:label) (c:com) : bool :=
match c with
| <{ skip }> ⇒ true
| <{ X := a }> ⇒ can_flow (join pc (label_of_aexp P a)) (P X)
| <{ c1 ; c2 }> ⇒ wt_typechecker P pc c1 && wt_typechecker P pc c2
| <{ if b then c1 else c2 end }> ⇒
wt_typechecker P (join pc (label_of_bexp P b)) c1 &&
wt_typechecker P (join pc (label_of_bexp P b)) c2
| <{ while b do c1 end }> ⇒
wt_typechecker P (join pc (label_of_bexp P b)) c1
end.
Lemma wt_typechecker_sound : ∀ P pc c,
wt_typechecker P pc c = true →
P ;; pc |-- c.
Proof.
intros P pc c. generalize dependent pc.
induction c; intros pc H; simpl in *; econstructor;
try rewrite andb_true_iff in *;
try destruct H; try tauto;
eauto using label_of_aexp_sound, label_of_bexp_sound.
Qed.
intros P pc c. generalize dependent pc.
induction c; intros pc H; simpl in *; econstructor;
try rewrite andb_true_iff in *;
try destruct H; try tauto;
eauto using label_of_aexp_sound, label_of_bexp_sound.
Qed.
Lemma wt_typechecker_complete : ∀ P pc c,
wt_typechecker P pc c = false →
¬ P ;; pc |-- c.
Proof.
intros P pc c H Hc. induction Hc; simpl in *;
try rewrite andb_false_iff in *; try tauto; try congruence.
- apply label_of_aexp_unique in H0.
rewrite H0 in ×. congruence.
- destruct H; apply label_of_bexp_unique in H0; subst; eauto.
- destruct H; apply label_of_bexp_unique in H0; subst; eauto.
Qed.
intros P pc c H Hc. induction Hc; simpl in *;
try rewrite andb_false_iff in *; try tauto; try congruence.
- apply label_of_aexp_unique in H0.
rewrite H0 in ×. congruence.
- destruct H; apply label_of_bexp_unique in H0; subst; eauto.
- destruct H; apply label_of_bexp_unique in H0; subst; eauto.
Qed.
With this more permissive type system we can accept more
noninterferent programs that were rejected by pc_well_typed.
Example wt_noninterferent_com :
xpub ;; public |--
<{ if Y=0 (* raises pc label from public to secret *)
then Z := 0 (* check: can_flow secret secret (OK!) *)
else skip
end }>.
Proof. apply wt_typechecker_sound. reflexivity. Qed.
xpub ;; public |--
<{ if Y=0 (* raises pc label from public to secret *)
then Z := 0 (* check: can_flow secret secret (OK!) *)
else skip
end }>.
Proof. apply wt_typechecker_sound. reflexivity. Qed.
And we still prevent implicit flows:
Example not_wt_insecure_com2 :
¬ xpub ;; public |--
<{ if Y=0 (* raises pc label from public to secret *)
then Y := 42
else X := X+1 (* check: can_flow secret public (FAILS!) *)
end }>.
Proof. apply wt_typechecker_complete. reflexivity. Qed.
Lemma weaken_pc : ∀ {P pc1 pc2 c},
P;; pc1 |-- c →
can_flow pc2 pc1 = true→
P;; pc2 |-- c.
Proof.
intros P pc1 pc2 c H. generalize dependent pc2.
induction H; subst; intros pc2 Hcan_flow.
- constructor.
- econstructor; try eassumption. apply can_flow_join_l.
+ apply can_flow_join_1 in H0. eapply can_flow_trans; eassumption.
+ apply can_flow_join_2 in H0. assumption.
- constructor; auto.
- econstructor; try eassumption.
+ apply IHwell_typed1. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
+ apply IHwell_typed2. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
- econstructor; try eassumption. apply IHwell_typed. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
Qed.
¬ xpub ;; public |--
<{ if Y=0 (* raises pc label from public to secret *)
then Y := 42
else X := X+1 (* check: can_flow secret public (FAILS!) *)
end }>.
Proof. apply wt_typechecker_complete. reflexivity. Qed.
Lemma weaken_pc : ∀ {P pc1 pc2 c},
P;; pc1 |-- c →
can_flow pc2 pc1 = true→
P;; pc2 |-- c.
Proof.
intros P pc1 pc2 c H. generalize dependent pc2.
induction H; subst; intros pc2 Hcan_flow.
- constructor.
- econstructor; try eassumption. apply can_flow_join_l.
+ apply can_flow_join_1 in H0. eapply can_flow_trans; eassumption.
+ apply can_flow_join_2 in H0. assumption.
- constructor; auto.
- econstructor; try eassumption.
+ apply IHwell_typed1. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
+ apply IHwell_typed2. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
- econstructor; try eassumption. apply IHwell_typed. apply can_flow_join_l.
× apply can_flow_join_r1. assumption.
× apply can_flow_join_r2. apply can_flow_refl.
Qed.
Lemma secret_run : ∀ {P c s s'},
P;; secret |-- c →
s =[ c ]=> s' →
pub_equiv P s s'.
Corollary different_code : ∀ P c1 c2 s1 s2 s1' s2',
P;; secret |-- c1 →
P;; secret |-- c2 →
pub_equiv P s1 s2 →
s1 =[ c1 ]=> s1' →
s2 =[ c2 ]=> s2' →
pub_equiv P s1' s2'.
P;; secret |-- c →
s =[ c ]=> s' →
pub_equiv P s s'.
Proof.
intros P c s s' Hwt Heval. induction Heval; inversion Hwt; subst.
- apply pub_equiv_refl.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ subst. rewrite join_secret_l in H4. rewrite Hy in H4. discriminate H4.
+ rewrite t_update_neq; auto.
- eapply pub_equiv_trans; eauto.
- eauto.
- eauto.
- apply pub_equiv_refl.
- eapply pub_equiv_trans; eauto.
Qed.
intros P c s s' Hwt Heval. induction Heval; inversion Hwt; subst.
- apply pub_equiv_refl.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ subst. rewrite join_secret_l in H4. rewrite Hy in H4. discriminate H4.
+ rewrite t_update_neq; auto.
- eapply pub_equiv_trans; eauto.
- eauto.
- eauto.
- apply pub_equiv_refl.
- eapply pub_equiv_trans; eauto.
Qed.
Corollary different_code : ∀ P c1 c2 s1 s2 s1' s2',
P;; secret |-- c1 →
P;; secret |-- c2 →
pub_equiv P s1 s2 →
s1 =[ c1 ]=> s1' →
s2 =[ c2 ]=> s2' →
pub_equiv P s1' s2'.
Proof.
intros P c1 c2 s1 s2 s1' s2' Hwt1 Hwt2 Hequiv Heval1 Heval2.
eapply secret_run in Hwt1; [| eassumption].
eapply secret_run in Hwt2; [| eassumption].
apply pub_equiv_sym in Hwt1.
eapply pub_equiv_trans; try eassumption.
eapply pub_equiv_trans; eassumption.
Qed.
intros P c1 c2 s1 s2 s1' s2' Hwt1 Hwt2 Hequiv Heval1 Heval2.
eapply secret_run in Hwt1; [| eassumption].
eapply secret_run in Hwt2; [| eassumption].
apply pub_equiv_sym in Hwt1.
eapply pub_equiv_trans; try eassumption.
eapply pub_equiv_trans; eassumption.
Qed.
Theorem well_typed_noninterferent : ∀ P c,
P;; public |-- c →
noninterferent P c.
P;; public |-- c →
noninterferent P c.
Proof.
intros P c Hwt s1 s2 s1' s2' Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
induction Heval1; intros s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- assumption.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
unfold can_flow in H9. rewrite join_public_l in H9.
apply orb_prop in H9. destruct H9 as [Hl | Hx].
× rewrite Hl in ×. apply (noninterferent_aexp Heq H8).
× subst. rewrite Hy in Hx. discriminate Hx.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
- (* if true-true *)
eapply IHHeval1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
- (* if true-false *) destruct l.
+ rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H5. discriminate H5.
+ eapply different_code with (c1:=c1) (c2:=c2); eassumption.
- (* if false-true *) destruct l.
+ rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H5. discriminate H5.
+ eapply different_code with (c1:=c2) (c2:=c1); eassumption.
- (* if false-false *)
eapply IHHeval1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
- (* while false-false *) assumption.
- (* while false-true *) destruct l.
+ rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H2. discriminate H2.
+ eapply different_code with (c1:=<{skip}>) (c2:=<{c;while b do c end}>);
repeat (try eassumption; try econstructor).
- (* while true-false *) destruct l.
+ rewrite (noninterferent_bexp Heq H8) in H.
rewrite H in H4. discriminate H4.
+ eapply different_code with (c1:=<{c;while b do c end}>) (c2:=<{skip}>);
repeat (try eassumption; try econstructor).
- (* while true-true *)
eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
Qed.
intros P c Hwt s1 s2 s1' s2' Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
induction Heval1; intros s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- assumption.
- intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
unfold can_flow in H9. rewrite join_public_l in H9.
apply orb_prop in H9. destruct H9 as [Hl | Hx].
× rewrite Hl in ×. apply (noninterferent_aexp Heq H8).
× subst. rewrite Hy in Hx. discriminate Hx.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; eassumption.
- (* if true-true *)
eapply IHHeval1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
- (* if true-false *) destruct l.
+ rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H5. discriminate H5.
+ eapply different_code with (c1:=c1) (c2:=c2); eassumption.
- (* if false-true *) destruct l.
+ rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H5. discriminate H5.
+ eapply different_code with (c1:=c2) (c2:=c1); eassumption.
- (* if false-false *)
eapply IHHeval1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
- (* while false-false *) assumption.
- (* while false-true *) destruct l.
+ rewrite (noninterferent_bexp Heq H10) in H.
rewrite H in H2. discriminate H2.
+ eapply different_code with (c1:=<{skip}>) (c2:=<{c;while b do c end}>);
repeat (try eassumption; try econstructor).
- (* while true-false *) destruct l.
+ rewrite (noninterferent_bexp Heq H8) in H.
rewrite H in H4. discriminate H4.
+ eapply different_code with (c1:=<{c;while b do c end}>) (c2:=<{skip}>);
repeat (try eassumption; try econstructor).
- (* while true-true *)
eapply IHHeval1_2; try eassumption. eapply IHHeval1_1; try eassumption.
eapply weaken_pc; try eassumption. apply can_flow_public.
Qed.
The noninterference proof is still relatively simple, since the
cases in which we take different branches based on secret
information are all handled by the different_code lemma.
Another key ingredient for having a simple noninterference proof
is working with a big-step semantics.
The noninterference notion we used above was "termination
insensitive". If we prevent loop conditions depending on secrets
we can actually enforce termination-sensitive noninterference
(TSNI), which we defined in Noninterference as follows:
Type system for termination-sensitive noninterference
Definition tsni P c :=
∀ s1 s2 s1',
s1 =[ c ]=> s1' →
pub_equiv P s1 s2 →
(∃ s2', s2 =[ c ]=> s2' ∧ pub_equiv P s1' s2').
∀ s1 s2 s1',
s1 =[ c ]=> s1' →
pub_equiv P s1 s2 →
(∃ s2', s2 =[ c ]=> s2' ∧ pub_equiv P s1' s2').
We could prove that pc_well_typed enforces TSNI, but that
typing relation is too restrictive, since for TSNI we can allow
if-then-else conditions to depend on secrets. So we define a new
type system that only prevents loop conditions to depend on secrets.
Old rule for noninterference:
New rule for termination-sensitive noninterference:
Beyond requiring the label of b to be public, we also require
that once one branches on secrets with if-then-else
(i.e. pc=secret) no while loops are allowed.
We just need to update the while rule of well_typed:
P ⊢b- b ∈ l P ;; join pc l |-- c | (WT_While) |
P ;; pc |-- while b then c end |
P ⊢b- b ∈ public P ;; public ⊢ts- c | (TS_While) |
P ;; public ⊢ts- while b then c end |
Reserved Notation "P ';;' pc '⊢ts-' c" (at level 40).
Inductive ts_well_typed (P:pub_vars) : label → com → Prop :=
| TS_Com : ∀ pc,
P;; pc ⊢ts- <{ skip }>
| TS_Asgn : ∀ pc X a l,
P ⊢a- a \in l →
can_flow (join pc l) (P X) = true →
P;; pc ⊢ts- <{ X := a }>
| TS_Seq : ∀ pc c1 c2,
P;; pc ⊢ts- c1 →
P;; pc ⊢ts- c2 →
P;; pc ⊢ts- <{ c1 ; c2 }>
| TS_If : ∀ pc b l c1 c2,
P ⊢b- b \in l →
P;; (join pc l) ⊢ts- c1 →
P;; (join pc l) ⊢ts- c2 →
P;; pc ⊢ts- <{ if b then c1 else c2 end }>
| TS_While : ∀ b c1,
P ⊢b- b \in public → (* <-- NEW *)
P;; public ⊢ts- c1 → (* <-- ONLY pc=public *)
P;; public ⊢ts- <{ while b do c1 end }>
where "P ';;' pc '⊢ts-' c" := (ts_well_typed P pc c).
Inductive ts_well_typed (P:pub_vars) : label → com → Prop :=
| TS_Com : ∀ pc,
P;; pc ⊢ts- <{ skip }>
| TS_Asgn : ∀ pc X a l,
P ⊢a- a \in l →
can_flow (join pc l) (P X) = true →
P;; pc ⊢ts- <{ X := a }>
| TS_Seq : ∀ pc c1 c2,
P;; pc ⊢ts- c1 →
P;; pc ⊢ts- c2 →
P;; pc ⊢ts- <{ c1 ; c2 }>
| TS_If : ∀ pc b l c1 c2,
P ⊢b- b \in l →
P;; (join pc l) ⊢ts- c1 →
P;; (join pc l) ⊢ts- c2 →
P;; pc ⊢ts- <{ if b then c1 else c2 end }>
| TS_While : ∀ b c1,
P ⊢b- b \in public → (* <-- NEW *)
P;; public ⊢ts- c1 → (* <-- ONLY pc=public *)
P;; public ⊢ts- <{ while b do c1 end }>
where "P ';;' pc '⊢ts-' c" := (ts_well_typed P pc c).
We prove that ts_well_typed enforces TSNI.
Theorem ts_well_typed_well_typed : ∀ P c pc,
P;; pc ⊢ts- c →
P;; pc |-- c.
Proof.
intros P c pc H. induction H; econstructor; eassumption.
Qed.
Theorem ts_well_typed_noninterferent : ∀ P c,
P;; public ⊢ts- c →
noninterferent P c.
Proof.
intros P c H. apply well_typed_noninterferent.
apply ts_well_typed_well_typed. apply H.
Qed.
Lemma ts_secret_run_terminating : ∀ {P c s},
P;; secret ⊢ts- c →
∃ s', s =[ c ]=> s'.
Proof.
intros P c s Hwt. remember secret as l.
generalize dependent s. induction Hwt; intro s.
- eexists. econstructor.
- eexists. econstructor. reflexivity.
- destruct (IHHwt1 Heql s) as [s' IH1].
destruct (IHHwt2 Heql s') as [s''IH2]. eexists. econstructor; eassumption.
- rewrite Heql in ×.
destruct (IHHwt1 Logic.eq_refl s) as [s1 IH1].
destruct (IHHwt2 Logic.eq_refl s) as [s2 IH2].
destruct (beval s b) eqn:Heq; eexists; econstructor; eassumption.
- discriminate Heql.
Qed.
Theorem ts_well_typed_equitermination : ∀ {P c s1 s2 s1'},
P;; public ⊢ts- c →
s1 =[ c ]=> s1' →
pub_equiv P s1 s2 →
∃ s2', s2 =[ c ]=> s2'.
Proof.
intros P C s1 s2 s1' Hwt Heval. generalize dependent s2.
induction Heval; intros s2 Heq; inversion Hwt; subst.
- eexists. constructor.
- eexists. econstructor. reflexivity.
- destruct (IHHeval1 H2 _ Heq) as [s2' IH1].
assert (Heq' : pub_equiv P st' s2').
{ eapply ts_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption]. assumption. }
destruct (IHHeval2 H3 _ Heq') as [s2'' IH2].
eexists. econstructor; eassumption.
- destruct l.
+ destruct (IHHeval H5 _ Heq) as [s2' IH1].
eexists. apply E_IfTrue; [ | eassumption ].
× eapply noninterferent_bexp in Heq; [ | eassumption ]. congruence.
+ eapply ts_secret_run_terminating in H5. destruct H5 as [s1' H5].
eapply ts_secret_run_terminating in H6. destruct H6 as [s2' H6].
destruct (beval s2 b) eqn:Heq2; eexists; econstructor; eassumption.
- destruct l.
+ destruct (IHHeval H6 _ Heq) as [s2' IH1].
eexists. apply E_IfFalse; [ | eassumption ].
× eapply noninterferent_bexp in Heq; [ | eassumption ]. congruence.
+ eapply ts_secret_run_terminating in H5. destruct H5 as [s1' H5].
eapply ts_secret_run_terminating in H6. destruct H6 as [s2' H6].
destruct (beval s2 b) eqn:Heq2; eexists; econstructor; eassumption.
- eapply noninterferent_bexp in Heq; [ | eassumption ].
eexists. apply E_WhileFalse. congruence.
- destruct (IHHeval1 H3 _ Heq) as [s2' IH1].
assert (Heq' : pub_equiv P st' s2').
{ eapply ts_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption]. assumption. }
destruct (IHHeval2 Hwt _ Heq') as [s2'' IH2].
eapply noninterferent_bexp in Heq; [ | eassumption ].
eexists. eapply E_WhileTrue; try congruence; eassumption.
Qed.
Corollary ts_well_typed_tsni : ∀ P c,
P;; public ⊢ts- c →
tsni P c.
P;; pc ⊢ts- c →
P;; pc |-- c.
Proof.
intros P c pc H. induction H; econstructor; eassumption.
Qed.
Theorem ts_well_typed_noninterferent : ∀ P c,
P;; public ⊢ts- c →
noninterferent P c.
Proof.
intros P c H. apply well_typed_noninterferent.
apply ts_well_typed_well_typed. apply H.
Qed.
Lemma ts_secret_run_terminating : ∀ {P c s},
P;; secret ⊢ts- c →
∃ s', s =[ c ]=> s'.
Proof.
intros P c s Hwt. remember secret as l.
generalize dependent s. induction Hwt; intro s.
- eexists. econstructor.
- eexists. econstructor. reflexivity.
- destruct (IHHwt1 Heql s) as [s' IH1].
destruct (IHHwt2 Heql s') as [s''IH2]. eexists. econstructor; eassumption.
- rewrite Heql in ×.
destruct (IHHwt1 Logic.eq_refl s) as [s1 IH1].
destruct (IHHwt2 Logic.eq_refl s) as [s2 IH2].
destruct (beval s b) eqn:Heq; eexists; econstructor; eassumption.
- discriminate Heql.
Qed.
Theorem ts_well_typed_equitermination : ∀ {P c s1 s2 s1'},
P;; public ⊢ts- c →
s1 =[ c ]=> s1' →
pub_equiv P s1 s2 →
∃ s2', s2 =[ c ]=> s2'.
Proof.
intros P C s1 s2 s1' Hwt Heval. generalize dependent s2.
induction Heval; intros s2 Heq; inversion Hwt; subst.
- eexists. constructor.
- eexists. econstructor. reflexivity.
- destruct (IHHeval1 H2 _ Heq) as [s2' IH1].
assert (Heq' : pub_equiv P st' s2').
{ eapply ts_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption]. assumption. }
destruct (IHHeval2 H3 _ Heq') as [s2'' IH2].
eexists. econstructor; eassumption.
- destruct l.
+ destruct (IHHeval H5 _ Heq) as [s2' IH1].
eexists. apply E_IfTrue; [ | eassumption ].
× eapply noninterferent_bexp in Heq; [ | eassumption ]. congruence.
+ eapply ts_secret_run_terminating in H5. destruct H5 as [s1' H5].
eapply ts_secret_run_terminating in H6. destruct H6 as [s2' H6].
destruct (beval s2 b) eqn:Heq2; eexists; econstructor; eassumption.
- destruct l.
+ destruct (IHHeval H6 _ Heq) as [s2' IH1].
eexists. apply E_IfFalse; [ | eassumption ].
× eapply noninterferent_bexp in Heq; [ | eassumption ]. congruence.
+ eapply ts_secret_run_terminating in H5. destruct H5 as [s1' H5].
eapply ts_secret_run_terminating in H6. destruct H6 as [s2' H6].
destruct (beval s2 b) eqn:Heq2; eexists; econstructor; eassumption.
- eapply noninterferent_bexp in Heq; [ | eassumption ].
eexists. apply E_WhileFalse. congruence.
- destruct (IHHeval1 H3 _ Heq) as [s2' IH1].
assert (Heq' : pub_equiv P st' s2').
{ eapply ts_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption]. assumption. }
destruct (IHHeval2 Hwt _ Heq') as [s2'' IH2].
eapply noninterferent_bexp in Heq; [ | eassumption ].
eexists. eapply E_WhileTrue; try congruence; eassumption.
Qed.
Corollary ts_well_typed_tsni : ∀ P c,
P;; public ⊢ts- c →
tsni P c.
Proof.
intros P c Hwt s1 s2 s1' Heval1 Heq.
destruct (ts_well_typed_equitermination Hwt Heval1 Heq) as [s2' Heval2].
∃ s2'. split; [assumption| ].
eapply ts_well_typed_noninterferent; eassumption.
Qed.
intros P c Hwt s1 s2 s1' Heval1 Heq.
destruct (ts_well_typed_equitermination Hwt Heval1 Heq) as [s2' Heval2].
∃ s2'. split; [assumption| ].
eapply ts_well_typed_noninterferent; eassumption.
Qed.
Program counter security
Instrumented semantics with branches
(E_Skip) | |
st =[ skip ]=> st, [] |
aeval st a = n | (E_Asgn) |
st =[ x := a ]=> (x !-> n ; st), [] |
st =[ c1 ]=> st', bs1 st' =[ c2 ]=> st'', bs2 | (E_Seq) |
st =[ c1;c2 ]=> st'', (bs1++bs2) |
beval st b = true st =[ c1 ]=> st', bs1 | (E_IfTrue) |
st =[ if b then c1 else c2 end ]=> st', true::bs1 |
beval st b = false st =[ c2 ]=> st', bs2 | (E_IfFalse) |
st =[ if b then c1 else c2 end ]=> st', false::bs2 |
st =[ if b then c; while b do c end else skip end ]=> st, os | (E_While) |
st =[ while b do c end ]=> st, os |
Reserved Notation
"st '=[' c ']=>' st' , bs"
(at level 40, c custom com at level 99,
st constr, st' constr at next level).
Inductive pceval : com → state → state → branches → Prop :=
| E_Skip : ∀ st,
st =[ skip ]=> st, []
| E_Asgn : ∀ st a n x,
aeval st a = n →
st =[ x := a ]=> (x !-> n ; st), []
| E_Seq : ∀ c1 c2 st st' st'' bs1 bs2,
st =[ c1 ]=> st', bs1 →
st' =[ c2 ]=> st'', bs2 →
st =[ c1 ; c2 ]=> st'', (bs1++bs2)
| E_IfTrue : ∀ st st' b c1 c2 bs1,
beval st b = true →
st =[ c1 ]=> st', bs1 →
st =[ if b then c1 else c2 end]=> st', (true::bs1)
| E_IfFalse : ∀ st st' b c1 c2 bs1,
beval st b = false →
st =[ c2 ]=> st', bs1 →
st =[ if b then c1 else c2 end]=> st', (false::bs1)
| E_While : ∀ b st os c, (* <- Nice trick; from small-step semantics *)
st =[ if b then c; while b do c end else skip end ]=> st, os →
st =[ while b do c end ]=> st, os
where "st =[ c ]=> st' , bs" := (pceval c st st' bs).
Lemma pceval_ceval : ∀ c st st' bs,
st =[ c ]=> st', bs →
st =[ c ]=> st'.
Proof.
intros c st st' bs H. induction H; try (econstructor; eassumption).
- (* need to justify the while trick *)
inversion IHpceval.
+ inversion H6. subst. eapply E_WhileTrue; eauto.
+ eapply E_WhileFalse; eauto.
Qed.
"st '=[' c ']=>' st' , bs"
(at level 40, c custom com at level 99,
st constr, st' constr at next level).
Inductive pceval : com → state → state → branches → Prop :=
| E_Skip : ∀ st,
st =[ skip ]=> st, []
| E_Asgn : ∀ st a n x,
aeval st a = n →
st =[ x := a ]=> (x !-> n ; st), []
| E_Seq : ∀ c1 c2 st st' st'' bs1 bs2,
st =[ c1 ]=> st', bs1 →
st' =[ c2 ]=> st'', bs2 →
st =[ c1 ; c2 ]=> st'', (bs1++bs2)
| E_IfTrue : ∀ st st' b c1 c2 bs1,
beval st b = true →
st =[ c1 ]=> st', bs1 →
st =[ if b then c1 else c2 end]=> st', (true::bs1)
| E_IfFalse : ∀ st st' b c1 c2 bs1,
beval st b = false →
st =[ c2 ]=> st', bs1 →
st =[ if b then c1 else c2 end]=> st', (false::bs1)
| E_While : ∀ b st os c, (* <- Nice trick; from small-step semantics *)
st =[ if b then c; while b do c end else skip end ]=> st, os →
st =[ while b do c end ]=> st, os
where "st =[ c ]=> st' , bs" := (pceval c st st' bs).
Lemma pceval_ceval : ∀ c st st' bs,
st =[ c ]=> st', bs →
st =[ c ]=> st'.
Proof.
intros c st st' bs H. induction H; try (econstructor; eassumption).
- (* need to justify the while trick *)
inversion IHpceval.
+ inversion H6. subst. eapply E_WhileTrue; eauto.
+ eapply E_WhileFalse; eauto.
Qed.
Program counter security definition
Definition pc_secure P c := ∀ s1 s2 s1' s2' bs1 bs2,
pub_equiv P s1 s2 →
s1 =[ c ]=> s1', bs1 →
s2 =[ c ]=> s2', bs2 →
bs1 = bs2.
pub_equiv P s1 s2 →
s1 =[ c ]=> s1', bs1 →
s2 =[ c ]=> s2', bs2 →
bs1 = bs2.
Program counter security is mostly orthogonal to noninterference and
instead of relating the final states it requires the branches of
the program to be independent of secrets.
Our restrictive pc_well_typed relation enforces both
noninterference (as we already proved above) and program counter security:
Theorem pc_well_typed_pc_secure : ∀ P c,
P ⊢pc- c →
pc_secure P c.
P ⊢pc- c →
pc_secure P c.
Proof.
intros P c Hwt s1 s2 s1' s2' bs1 bs2 Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent bs2.
induction Heval1; intros bs2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- reflexivity.
- reflexivity.
- erewrite IHHeval1_2; [erewrite IHHeval1_1 | | |];
try reflexivity; try eassumption.
(* the proof does rely on noninterference for the sequencing case *)
eapply pc_well_typed_noninterferent;
[ | eassumption | eapply pceval_ceval; eassumption
| eapply pceval_ceval; eassumption ]; eassumption.
- f_equal. eapply IHHeval1; try eassumption.
- rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H6. discriminate H6.
- rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H6. discriminate H6.
- f_equal. eapply IHHeval1; eassumption.
- eapply IHHeval1; try eassumption. repeat constructor; eassumption.
Qed.
intros P c Hwt s1 s2 s1' s2' bs1 bs2 Heq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent bs2.
induction Heval1; intros bs2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- reflexivity.
- reflexivity.
- erewrite IHHeval1_2; [erewrite IHHeval1_1 | | |];
try reflexivity; try eassumption.
(* the proof does rely on noninterference for the sequencing case *)
eapply pc_well_typed_noninterferent;
[ | eassumption | eapply pceval_ceval; eassumption
| eapply pceval_ceval; eassumption ]; eassumption.
- f_equal. eapply IHHeval1; try eassumption.
- rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H6. discriminate H6.
- rewrite (noninterferent_bexp Heq H11) in H.
rewrite H in H6. discriminate H6.
- f_equal. eapply IHHeval1; eassumption.
- eapply IHHeval1; try eassumption. repeat constructor; eassumption.
Qed.
The proof does rely on pc_well_typed implying
noninterference for the sequencing and loop cases.
(* 2025-01-29 15:13 *)