SpecCTSpeculative Constant-Time
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From Coq Require Import Strings.String.
From SECF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Arith.EqNat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import Lia.
From Coq Require Import List. Import ListNotations.
Set Default Goal Selector "!".
From Coq Require Import Strings.String.
From SECF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Arith.EqNat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import Lia.
From Coq Require Import List. Import ListNotations.
Set Default Goal Selector "!".
Cryptographic constant-time
x <- a[secret]
Constant-time conditional
Inductive aexp : Type :=
| ANum (n : nat)
| AId (x : string)
| APlus (a1 a2 : aexp)
| AMinus (a1 a2 : aexp)
| AMult (a1 a2 : aexp)
| ACTIf (b:bexp) (a1 a2:aexp) (* <--- NEW *)
with bexp : Type :=
| BTrue
| BFalse
| BEq (a1 a2 : aexp)
| BNeq (a1 a2 : aexp)
| BLe (a1 a2 : aexp)
| BGt (a1 a2 : aexp)
| BNot (b : bexp)
| BAnd (b1 b2 : bexp).
Scheme aexp_bexp_ind := Induction for aexp Sort Prop
with bexp_aexp_ind := Induction for bexp Sort Prop.
Combined Scheme aexp_bexp_mutind from aexp_bexp_ind,bexp_aexp_ind.
| ANum (n : nat)
| AId (x : string)
| APlus (a1 a2 : aexp)
| AMinus (a1 a2 : aexp)
| AMult (a1 a2 : aexp)
| ACTIf (b:bexp) (a1 a2:aexp) (* <--- NEW *)
with bexp : Type :=
| BTrue
| BFalse
| BEq (a1 a2 : aexp)
| BNeq (a1 a2 : aexp)
| BLe (a1 a2 : aexp)
| BGt (a1 a2 : aexp)
| BNot (b : bexp)
| BAnd (b1 b2 : bexp).
Scheme aexp_bexp_ind := Induction for aexp Sort Prop
with bexp_aexp_ind := Induction for bexp Sort Prop.
Combined Scheme aexp_bexp_mutind from aexp_bexp_ind,bexp_aexp_ind.
Typing Constant-time Conditionals
P⊢b- be ∈ l P ⊢a- a1 ∈ l1 P ⊢a- a2 ∈ l2 | (T_CTIf) |
P ⊢a- be?a1:a2 ∈ join l (join l1 l2) |
Definition W : string := "W".
Definition X : string := "X".
Definition Y : string := "Y".
Definition Z : string := "Z".
Definition A : string := "A".
Definition AP : string := "AP".
Definition AS : string := "AS".
Coercion AId : string >-> aexp.
Coercion ANum : nat >-> aexp.
Declare Custom Entry com.
Declare Scope com_scope.
Notation "<{ e }>" := e (at level 0, e custom com at level 99) : com_scope.
Notation "( x )" := x (in custom com, x at level 99) : com_scope.
Notation "x" := x (in custom com at level 0, x constr at level 0) : com_scope.
Notation "f x .. y" := (.. (f x) .. y)
(in custom com at level 0, only parsing,
f constr at level 0, x constr at level 9,
y constr at level 9) : com_scope.
Notation "x + y" := (APlus x y) (in custom com at level 50, left associativity).
Notation "x - y" := (AMinus x y) (in custom com at level 50, left associativity).
Notation "x * y" := (AMult x y) (in custom com at level 40, left associativity).
Notation "be '?' a1 ':' a2" := (ACTIf be a1 a2)
(in custom com at level 20, no associativity).
Notation "'true'" := true (at level 1).
Notation "'true'" := BTrue (in custom com at level 0).
Notation "'false'" := false (at level 1).
Notation "'false'" := BFalse (in custom com at level 0).
Notation "x <= y" := (BLe x y) (in custom com at level 70, no associativity).
Notation "x > y" := (BGt x y) (in custom com at level 70, no associativity).
Notation "x = y" := (BEq x y) (in custom com at level 70, no associativity).
Notation "x <> y" := (BNeq x y) (in custom com at level 70, no associativity).
Notation "x && y" := (BAnd x y) (in custom com at level 80, left associativity).
Notation "'~' b" := (BNot b) (in custom com at level 75, right associativity).
Open Scope com_scope.
Definition X : string := "X".
Definition Y : string := "Y".
Definition Z : string := "Z".
Definition A : string := "A".
Definition AP : string := "AP".
Definition AS : string := "AS".
Coercion AId : string >-> aexp.
Coercion ANum : nat >-> aexp.
Declare Custom Entry com.
Declare Scope com_scope.
Notation "<{ e }>" := e (at level 0, e custom com at level 99) : com_scope.
Notation "( x )" := x (in custom com, x at level 99) : com_scope.
Notation "x" := x (in custom com at level 0, x constr at level 0) : com_scope.
Notation "f x .. y" := (.. (f x) .. y)
(in custom com at level 0, only parsing,
f constr at level 0, x constr at level 9,
y constr at level 9) : com_scope.
Notation "x + y" := (APlus x y) (in custom com at level 50, left associativity).
Notation "x - y" := (AMinus x y) (in custom com at level 50, left associativity).
Notation "x * y" := (AMult x y) (in custom com at level 40, left associativity).
Notation "be '?' a1 ':' a2" := (ACTIf be a1 a2)
(in custom com at level 20, no associativity).
Notation "'true'" := true (at level 1).
Notation "'true'" := BTrue (in custom com at level 0).
Notation "'false'" := false (at level 1).
Notation "'false'" := BFalse (in custom com at level 0).
Notation "x <= y" := (BLe x y) (in custom com at level 70, no associativity).
Notation "x > y" := (BGt x y) (in custom com at level 70, no associativity).
Notation "x = y" := (BEq x y) (in custom com at level 70, no associativity).
Notation "x <> y" := (BNeq x y) (in custom com at level 70, no associativity).
Notation "x && y" := (BAnd x y) (in custom com at level 80, left associativity).
Notation "'~' b" := (BNot b) (in custom com at level 75, right associativity).
Open Scope com_scope.
Inductive com : Type :=
| Skip
| Asgn (x : string) (e : aexp)
| Seq (c1 c2 : com)
| If (be : bexp) (c1 c2 : com)
| While (be : bexp) (c : com)
| ARead (x : string) (a : string) (i : aexp) (* <--- NEW *)
| AWrite (a : string) (i : aexp) (e : aexp) (* <--- NEW *).
Notation "<{{ e }}>" := e (at level 0, e custom com at level 99) : com_scope.
Notation "( x )" := x (in custom com, x at level 99) : com_scope.
Notation "x" := x (in custom com at level 0, x constr at level 0) : com_scope.
Notation "f x .. y" := (.. (f x) .. y)
(in custom com at level 0, only parsing,
f constr at level 0, x constr at level 9,
y constr at level 9) : com_scope.
Open Scope com_scope.
Notation "'skip'" :=
Skip (in custom com at level 0) : com_scope.
Notation "x := y" :=
(Asgn x y)
(in custom com at level 0, x constr at level 0,
y custom com at level 85, no associativity) : com_scope.
Notation "x ; y" :=
(Seq x y)
(in custom com at level 90, right associativity) : com_scope.
Notation "'if' x 'then' y 'else' z 'end'" :=
(If x y z)
(in custom com at level 89, x custom com at level 99,
y at level 99, z at level 99) : com_scope.
Notation "'while' x 'do' y 'end'" :=
(While x y)
(in custom com at level 89, x custom com at level 99, y at level 99) : com_scope.
Notation "x '<-' a '[[' i ']]'" :=
(ARead x a i)
(in custom com at level 0, x constr at level 0,
a at level 85, i custom com at level 85, no associativity) : com_scope.
Notation "a '[' i ']' '<-' e" :=
(AWrite a i e)
(in custom com at level 0, a constr at level 0,
i custom com at level 0, e custom com at level 85,
no associativity) : com_scope.
Definition state := total_map nat.
Definition astate := total_map (list nat).
Fixpoint aeval (st : state) (a : aexp) : nat :=
match a with
| ANum n ⇒ n
| AId x ⇒ st x
| <{a1 + a2}> ⇒ (aeval st a1) + (aeval st a2)
| <{a1 - a2}> ⇒ (aeval st a1) - (aeval st a2)
| <{a1 × a2}> ⇒ (aeval st a1) × (aeval st a2)
| <{b ? a1 : a2}> ⇒ if beval st b then aeval st a1
(* ^- NEW -> *) else aeval st a2
end
with beval (st : state) (b : bexp) : bool :=
match b with
| <{true}> ⇒ true
| <{false}> ⇒ false
| <{a1 = a2}> ⇒ (aeval st a1) =? (aeval st a2)
| <{a1 ≠ a2}> ⇒ negb ((aeval st a1) =? (aeval st a2))
| <{a1 ≤ a2}> ⇒ (aeval st a1) <=? (aeval st a2)
| <{a1 > a2}> ⇒ negb ((aeval st a1) <=? (aeval st a2))
| <{¬ b1}> ⇒ negb (beval st b1)
| <{b1 && b2}> ⇒ andb (beval st b1) (beval st b2)
end.
Fixpoint upd (i:nat) (ns:list nat) (n:nat) : list nat :=
match i, ns with
| 0, _ :: ns' ⇒ n :: ns'
| S i', _ :: ns' ⇒ upd i' ns' n
| _, _ ⇒ ns
end.
| Skip
| Asgn (x : string) (e : aexp)
| Seq (c1 c2 : com)
| If (be : bexp) (c1 c2 : com)
| While (be : bexp) (c : com)
| ARead (x : string) (a : string) (i : aexp) (* <--- NEW *)
| AWrite (a : string) (i : aexp) (e : aexp) (* <--- NEW *).
Notation "<{{ e }}>" := e (at level 0, e custom com at level 99) : com_scope.
Notation "( x )" := x (in custom com, x at level 99) : com_scope.
Notation "x" := x (in custom com at level 0, x constr at level 0) : com_scope.
Notation "f x .. y" := (.. (f x) .. y)
(in custom com at level 0, only parsing,
f constr at level 0, x constr at level 9,
y constr at level 9) : com_scope.
Open Scope com_scope.
Notation "'skip'" :=
Skip (in custom com at level 0) : com_scope.
Notation "x := y" :=
(Asgn x y)
(in custom com at level 0, x constr at level 0,
y custom com at level 85, no associativity) : com_scope.
Notation "x ; y" :=
(Seq x y)
(in custom com at level 90, right associativity) : com_scope.
Notation "'if' x 'then' y 'else' z 'end'" :=
(If x y z)
(in custom com at level 89, x custom com at level 99,
y at level 99, z at level 99) : com_scope.
Notation "'while' x 'do' y 'end'" :=
(While x y)
(in custom com at level 89, x custom com at level 99, y at level 99) : com_scope.
Notation "x '<-' a '[[' i ']]'" :=
(ARead x a i)
(in custom com at level 0, x constr at level 0,
a at level 85, i custom com at level 85, no associativity) : com_scope.
Notation "a '[' i ']' '<-' e" :=
(AWrite a i e)
(in custom com at level 0, a constr at level 0,
i custom com at level 0, e custom com at level 85,
no associativity) : com_scope.
Definition state := total_map nat.
Definition astate := total_map (list nat).
Fixpoint aeval (st : state) (a : aexp) : nat :=
match a with
| ANum n ⇒ n
| AId x ⇒ st x
| <{a1 + a2}> ⇒ (aeval st a1) + (aeval st a2)
| <{a1 - a2}> ⇒ (aeval st a1) - (aeval st a2)
| <{a1 × a2}> ⇒ (aeval st a1) × (aeval st a2)
| <{b ? a1 : a2}> ⇒ if beval st b then aeval st a1
(* ^- NEW -> *) else aeval st a2
end
with beval (st : state) (b : bexp) : bool :=
match b with
| <{true}> ⇒ true
| <{false}> ⇒ false
| <{a1 = a2}> ⇒ (aeval st a1) =? (aeval st a2)
| <{a1 ≠ a2}> ⇒ negb ((aeval st a1) =? (aeval st a2))
| <{a1 ≤ a2}> ⇒ (aeval st a1) <=? (aeval st a2)
| <{a1 > a2}> ⇒ negb ((aeval st a1) <=? (aeval st a2))
| <{¬ b1}> ⇒ negb (beval st b1)
| <{b1 && b2}> ⇒ andb (beval st b1) (beval st b2)
end.
Fixpoint upd (i:nat) (ns:list nat) (n:nat) : list nat :=
match i, ns with
| 0, _ :: ns' ⇒ n :: ns'
| S i', _ :: ns' ⇒ upd i' ns' n
| _, _ ⇒ ns
end.
Inductive observation : Type :=
| OBranch (b : bool)
| OARead (a : string) (i : nat)
| OAWrite (a : string) (i : nat).
Definition obs := list observation.
| OBranch (b : bool)
| OARead (a : string) (i : nat)
| OAWrite (a : string) (i : nat).
Definition obs := list observation.
We define an instrumented big-step operational semantics based on these
observations.
(CTE_Skip) | |
<(st , ast)> =[ skip ]=> <(st, ast, [])> |
aeval st e = n | (CTE_Asgn) |
<(st, ast)> =[ x := e ]=> <(x !-> n; st, ast, [])> |
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> | |
<(st', ast')> =[ c2 ]=> <(st'', ast'', os2)> | (CTE_Seq) |
<(st, ast)> =[ c1 ; c2 ]=> <(st'', ast'', os2++os1)> |
beval st b = true | |
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> | (* CTE_IfTrue *) |
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch true])> |
beval st b = false | |
<(st, ast)> =[ c2 ]=> <(st', ast', os1)> | (* CTE_IfFalse *) |
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch false])> |
<(st,ast)> =[ if b then c; while b do c end else skip end ]=> <(st', ast', os)> | (* CTE_While *) |
<(st,ast)> =[ while b do c end ]=> <(st', ast', os)> |
aeval st ie = i | |
i < length (ast a) | (* CTE_AREad *) |
<(st, ast)> =[ x <- a[[ie]] ]=> <(x !-> nth i (ast a) 0; st, ast, [OARead a i])> |
aeval st e = n | |
aeval st ie = i | |
i < length (ast a) | (* CTE_Write *) |
<(st, ast)> =[ a[ie] <- e ]=> <(st, a !-> upd i (ast a) n; ast, [OAWrite a i])> |
Reserved Notation
"'<(' st , ast ')>' '=[' c ']=>' '<(' stt , astt , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive cteval : com → state → astate → state → astate → obs → Prop :=
| CTE_Skip : ∀ st ast,
<(st , ast)> =[ skip ]=> <(st, ast, [])>
| CTE_Asgn : ∀ st ast e n x,
aeval st e = n →
<(st, ast)> =[ x := e ]=> <(x !-> n; st, ast, [])>
| CTE_Seq : ∀ c1 c2 st ast st' ast' st'' ast'' os1 os2,
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> →
<(st', ast')> =[ c2 ]=> <(st'', ast'', os2)> →
<(st, ast)> =[ c1 ; c2 ]=> <(st'', ast'', os2++os1)>
| CTE_IfTrue : ∀ st ast st' ast' b c1 c2 os1,
beval st b = true →
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> →
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch true])>
| CTE_IfFalse : ∀ st ast st' ast' b c1 c2 os1,
beval st b = false →
<(st, ast)> =[ c2 ]=> <(st', ast', os1)> →
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch false])>
| CTE_While : ∀ b st ast st' ast' os c,
<(st,ast)> =[ if b then c; while b do c end else skip end ]=>
<(st', ast', os)> → (* <^- Nice trick; from small-step semantics *)
<(st,ast)> =[ while b do c end ]=> <(st', ast', os)>
| CTE_ARead : ∀ st ast x a ie i,
aeval st ie = i →
i < length (ast a) →
<(st, ast)> =[ x <- a[[ie]] ]=> <(x !-> nth i (ast a) 0; st, ast, [OARead a i])>
| CTE_Write : ∀ st ast a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
<(st, ast)> =[ a[ie] <- e ]=> <(st, a !-> upd i (ast a) n; ast, [OAWrite a i])>
where "<( st , ast )> =[ c ]=> <( stt , astt , os )>" := (cteval c st ast stt astt os).
"'<(' st , ast ')>' '=[' c ']=>' '<(' stt , astt , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive cteval : com → state → astate → state → astate → obs → Prop :=
| CTE_Skip : ∀ st ast,
<(st , ast)> =[ skip ]=> <(st, ast, [])>
| CTE_Asgn : ∀ st ast e n x,
aeval st e = n →
<(st, ast)> =[ x := e ]=> <(x !-> n; st, ast, [])>
| CTE_Seq : ∀ c1 c2 st ast st' ast' st'' ast'' os1 os2,
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> →
<(st', ast')> =[ c2 ]=> <(st'', ast'', os2)> →
<(st, ast)> =[ c1 ; c2 ]=> <(st'', ast'', os2++os1)>
| CTE_IfTrue : ∀ st ast st' ast' b c1 c2 os1,
beval st b = true →
<(st, ast)> =[ c1 ]=> <(st', ast', os1)> →
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch true])>
| CTE_IfFalse : ∀ st ast st' ast' b c1 c2 os1,
beval st b = false →
<(st, ast)> =[ c2 ]=> <(st', ast', os1)> →
<(st, ast)> =[ if b then c1 else c2 end]=> <(st', ast', os1 ++ [OBranch false])>
| CTE_While : ∀ b st ast st' ast' os c,
<(st,ast)> =[ if b then c; while b do c end else skip end ]=>
<(st', ast', os)> → (* <^- Nice trick; from small-step semantics *)
<(st,ast)> =[ while b do c end ]=> <(st', ast', os)>
| CTE_ARead : ∀ st ast x a ie i,
aeval st ie = i →
i < length (ast a) →
<(st, ast)> =[ x <- a[[ie]] ]=> <(x !-> nth i (ast a) 0; st, ast, [OARead a i])>
| CTE_Write : ∀ st ast a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
<(st, ast)> =[ a[ie] <- e ]=> <(st, a !-> upd i (ast a) n; ast, [OAWrite a i])>
where "<( st , ast )> =[ c ]=> <( stt , astt , os )>" := (cteval c st ast stt astt os).
Definition label := bool.
Definition public : label := true.
Definition secret : label := false.
Definition pub_vars := total_map label.
Definition pub_arrs := total_map label.
Definition pub_equiv (P : total_map label) {X:Type} (s1 s2 : total_map X) :=
∀ x:string, P x = true → s1 x = s2 x.
Lemma pub_equiv_refl : ∀ {X:Type} (P : total_map label) (s : total_map X),
pub_equiv P s s.
Proof. intros X P s x Hx. reflexivity. Qed.
Lemma pub_equiv_sym : ∀ {X:Type} (P : total_map label) (s1 s2 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s1.
Proof. unfold pub_equiv. intros X P s1 s2 H x Px. rewrite H; auto. Qed.
Lemma pub_equiv_trans : ∀ {X:Type} (P : total_map label) (s1 s2 s3 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s3 →
pub_equiv P s1 s3.
Proof.
unfold pub_equiv. intros X P s1 s2 s3 H12 H23 x Px.
rewrite H12; try rewrite H23; auto.
Qed.
Definition ct_secure P PA c :=
∀ st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2,
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1)> =[ c ]=> <(st1', ast1', os1)> →
<(st2, ast2)> =[ c ]=> <(st2', ast2', os2)> →
os1 = os2.
Definition public : label := true.
Definition secret : label := false.
Definition pub_vars := total_map label.
Definition pub_arrs := total_map label.
Definition pub_equiv (P : total_map label) {X:Type} (s1 s2 : total_map X) :=
∀ x:string, P x = true → s1 x = s2 x.
Lemma pub_equiv_refl : ∀ {X:Type} (P : total_map label) (s : total_map X),
pub_equiv P s s.
Proof. intros X P s x Hx. reflexivity. Qed.
Lemma pub_equiv_sym : ∀ {X:Type} (P : total_map label) (s1 s2 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s1.
Proof. unfold pub_equiv. intros X P s1 s2 H x Px. rewrite H; auto. Qed.
Lemma pub_equiv_trans : ∀ {X:Type} (P : total_map label) (s1 s2 s3 : total_map X),
pub_equiv P s1 s2 →
pub_equiv P s2 s3 →
pub_equiv P s1 s3.
Proof.
unfold pub_equiv. intros X P s1 s2 s3 H12 H23 x Px.
rewrite H12; try rewrite H23; auto.
Qed.
Definition ct_secure P PA c :=
∀ st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2,
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1)> =[ c ]=> <(st1', ast1', os1)> →
<(st2, ast2)> =[ c ]=> <(st2', ast2', os2)> →
os1 = os2.
Definition ct_insecure_prog :=
<{{ X <- A[[Y]] }}> .
(* This program is trivially pc secure, because it does not branch at all.
But it is not constant-time secure, if Y is a secret variable. This is
shown below. *)
Example ct_insecure_prog_is_not_ct_secure : ∃ P PA,
¬ (ct_secure P PA ct_insecure_prog) .
Proof.
remember (X!-> public; Y!-> secret; _!-> public) as P.
remember (A!-> secret; _!-> public) as PA.
∃ P. ∃ PA. unfold ct_secure, ct_insecure_prog; intros H.
remember (Y!-> 1; _ !-> 0) as st1.
remember (Y!-> 2; _ !-> 0) as st2.
remember (A!-> [1;2;3]; _!-> []) as ast.
assert (Heval1: <(st1, ast)> =[ct_insecure_prog]=> <(X!->2; st1, ast, [OARead A 1])>).
{ unfold ct_insecure_prog; subst.
replace (X !-> 2; Y !-> 1; _ !-> 0)
with (X !-> nth 1 ((A!-> [1;2;3]; _!-> []) A) 0; Y !-> 1; _ !-> 0)
by (reflexivity).
eapply CTE_ARead; simpl; auto. }
assert (Heval2: <(st2, ast)> =[ct_insecure_prog]=> <(X!->3; st2, ast, [OARead A 2])>).
{ unfold ct_insecure_prog; subst.
replace (X !-> 3; Y !-> 2; _ !-> 0)
with (X !-> nth 2 ((A!-> [1;2;3]; _!-> []) A) 0; Y !-> 2; _ !-> 0)
by (reflexivity).
eapply CTE_ARead; simpl; auto. }
subst. eapply H in Heval2; eauto.
- inversion Heval2.
- intros x Hx. destruct (String.eqb_spec Y x) as [Heq | Hneq].
+ subst. rewrite t_update_neq in Hx; [| discriminate].
rewrite t_update_eq in Hx. discriminate.
+ do 2 (rewrite t_update_neq; [| assumption]). reflexivity.
- apply pub_equiv_refl.
Qed.
<{{ X <- A[[Y]] }}> .
(* This program is trivially pc secure, because it does not branch at all.
But it is not constant-time secure, if Y is a secret variable. This is
shown below. *)
Example ct_insecure_prog_is_not_ct_secure : ∃ P PA,
¬ (ct_secure P PA ct_insecure_prog) .
Proof.
remember (X!-> public; Y!-> secret; _!-> public) as P.
remember (A!-> secret; _!-> public) as PA.
∃ P. ∃ PA. unfold ct_secure, ct_insecure_prog; intros H.
remember (Y!-> 1; _ !-> 0) as st1.
remember (Y!-> 2; _ !-> 0) as st2.
remember (A!-> [1;2;3]; _!-> []) as ast.
assert (Heval1: <(st1, ast)> =[ct_insecure_prog]=> <(X!->2; st1, ast, [OARead A 1])>).
{ unfold ct_insecure_prog; subst.
replace (X !-> 2; Y !-> 1; _ !-> 0)
with (X !-> nth 1 ((A!-> [1;2;3]; _!-> []) A) 0; Y !-> 1; _ !-> 0)
by (reflexivity).
eapply CTE_ARead; simpl; auto. }
assert (Heval2: <(st2, ast)> =[ct_insecure_prog]=> <(X!->3; st2, ast, [OARead A 2])>).
{ unfold ct_insecure_prog; subst.
replace (X !-> 3; Y !-> 2; _ !-> 0)
with (X !-> nth 2 ((A!-> [1;2;3]; _!-> []) A) 0; Y !-> 2; _ !-> 0)
by (reflexivity).
eapply CTE_ARead; simpl; auto. }
subst. eapply H in Heval2; eauto.
- inversion Heval2.
- intros x Hx. destruct (String.eqb_spec Y x) as [Heq | Hneq].
+ subst. rewrite t_update_neq in Hx; [| discriminate].
rewrite t_update_eq in Hx. discriminate.
+ do 2 (rewrite t_update_neq; [| assumption]). reflexivity.
- apply pub_equiv_refl.
Qed.
Definition join (l1 l2 : label) : label := l1 && l2.
Lemma join_public : ∀ {l1 l2},
join l1 l2 = public → l1 = public ∧ l2 = public.
Proof. apply andb_prop. Qed.
Definition can_flow (l1 l2 : label) : bool := l1 || negb l2.
Reserved Notation "P '⊢a-' a ∈ l" (at level 40).
Reserved Notation "P '⊢b-' b ∈ l" (at level 40).
Inductive aexp_has_label (P:pub_vars) : aexp → label → Prop :=
| T_Num : ∀ n,
P ⊢a- (ANum n) \in public
| T_Id : ∀ X,
P ⊢a- (AId X) \in (P X)
| T_Plus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 + a2 }> \in (join l1 l2)
| T_Minus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 - a2 }> \in (join l1 l2)
| T_Mult : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 × a2 }> \in (join l1 l2)
| T_CTIf : ∀ be l a1 l1 a2 l2,
P ⊢b- be \in l →
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ be ? a1 : a2 }> \in (join l (join l1 l2))
where "P '⊢a-' a '∈' l" := (aexp_has_label P a l)
with bexp_has_label (P:pub_vars) : bexp → label → Prop :=
| T_True :
P ⊢b- <{ true }> \in public
| T_False :
P ⊢b- <{ false }> \in public
| T_Eq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 = a2 }> \in (join l1 l2)
| T_Neq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≠ a2 }> \in (join l1 l2)
| T_Le : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≤ a2 }> \in (join l1 l2)
| T_Gt : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 > a2 }> \in (join l1 l2)
| T_Not : ∀ b l,
P ⊢b- b \in l →
P ⊢b- <{ ¬b }> \in l
| T_And : ∀ b1 l1 b2 l2,
P ⊢b- b1 \in l1 →
P ⊢b- b2 \in l2 →
P ⊢b- <{ b1 && b2 }> \in (join l1 l2)
where "P '⊢b-' b '∈' l" := (bexp_has_label P b l).
Scheme aexp_bexp_has_label_ind := Induction for aexp_has_label Sort Prop
with bexp_aexp_has_label_ind := Induction for bexp_has_label Sort Prop.
Combined Scheme aexp_bexp_has_label_mutind
from aexp_bexp_has_label_ind,bexp_aexp_has_label_ind.
Theorem noninterferent_aexp_bexp : ∀ P s1 s2,
pub_equiv P s1 s2 →
(∀ a l, P ⊢a- a \in l →
l = public → aeval s1 a = aeval s2 a) ∧
(∀ b l, P ⊢b- b \in l →
l = public → beval s1 b = beval s2 b).
Proof.
intros P s1 s2 Heq. apply (aexp_bexp_has_label_mutind P);
simpl; intros;
(repeat match goal with
| [Heql : join _ _ = public ⊢ _] ⇒
let G1 := fresh "G1" in
let G2 := fresh "G2" in
destruct (join_public Heql) as [G1 G2];
rewrite G1 in *; rewrite G2 in ×
end); try reflexivity; eauto; firstorder;
(repeat match goal with
| [IH : aeval s1 ?a = aeval s2 ?a ⊢ _] ⇒ rewrite IH
end);
(repeat match goal with
| [IH : beval s1 ?b = beval s2 ?b ⊢ _] ⇒ rewrite IH
end); reflexivity.
Qed.
Theorem noninterferent_aexp : ∀ {P s1 s2 a},
pub_equiv P s1 s2 →
P ⊢a- a \in public →
aeval s1 a = aeval s2 a.
Proof.
intros P s1 s2 a Heq Ht. remember public as l.
generalize dependent Heql. generalize dependent l.
apply noninterferent_aexp_bexp. assumption.
Qed.
Theorem noninterferent_bexp : ∀ {P s1 s2 b},
pub_equiv P s1 s2 →
P ⊢b- b \in public →
beval s1 b = beval s2 b.
Proof.
intros P s1 s2 b Heq Ht. remember public as l.
generalize dependent Heql. generalize dependent l.
apply noninterferent_aexp_bexp. assumption.
Qed.
Lemma join_public : ∀ {l1 l2},
join l1 l2 = public → l1 = public ∧ l2 = public.
Proof. apply andb_prop. Qed.
Definition can_flow (l1 l2 : label) : bool := l1 || negb l2.
Reserved Notation "P '⊢a-' a ∈ l" (at level 40).
Reserved Notation "P '⊢b-' b ∈ l" (at level 40).
Inductive aexp_has_label (P:pub_vars) : aexp → label → Prop :=
| T_Num : ∀ n,
P ⊢a- (ANum n) \in public
| T_Id : ∀ X,
P ⊢a- (AId X) \in (P X)
| T_Plus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 + a2 }> \in (join l1 l2)
| T_Minus : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 - a2 }> \in (join l1 l2)
| T_Mult : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ a1 × a2 }> \in (join l1 l2)
| T_CTIf : ∀ be l a1 l1 a2 l2,
P ⊢b- be \in l →
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢a- <{ be ? a1 : a2 }> \in (join l (join l1 l2))
where "P '⊢a-' a '∈' l" := (aexp_has_label P a l)
with bexp_has_label (P:pub_vars) : bexp → label → Prop :=
| T_True :
P ⊢b- <{ true }> \in public
| T_False :
P ⊢b- <{ false }> \in public
| T_Eq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 = a2 }> \in (join l1 l2)
| T_Neq : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≠ a2 }> \in (join l1 l2)
| T_Le : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 ≤ a2 }> \in (join l1 l2)
| T_Gt : ∀ a1 l1 a2 l2,
P ⊢a- a1 \in l1 →
P ⊢a- a2 \in l2 →
P ⊢b- <{ a1 > a2 }> \in (join l1 l2)
| T_Not : ∀ b l,
P ⊢b- b \in l →
P ⊢b- <{ ¬b }> \in l
| T_And : ∀ b1 l1 b2 l2,
P ⊢b- b1 \in l1 →
P ⊢b- b2 \in l2 →
P ⊢b- <{ b1 && b2 }> \in (join l1 l2)
where "P '⊢b-' b '∈' l" := (bexp_has_label P b l).
Scheme aexp_bexp_has_label_ind := Induction for aexp_has_label Sort Prop
with bexp_aexp_has_label_ind := Induction for bexp_has_label Sort Prop.
Combined Scheme aexp_bexp_has_label_mutind
from aexp_bexp_has_label_ind,bexp_aexp_has_label_ind.
Theorem noninterferent_aexp_bexp : ∀ P s1 s2,
pub_equiv P s1 s2 →
(∀ a l, P ⊢a- a \in l →
l = public → aeval s1 a = aeval s2 a) ∧
(∀ b l, P ⊢b- b \in l →
l = public → beval s1 b = beval s2 b).
Proof.
intros P s1 s2 Heq. apply (aexp_bexp_has_label_mutind P);
simpl; intros;
(repeat match goal with
| [Heql : join _ _ = public ⊢ _] ⇒
let G1 := fresh "G1" in
let G2 := fresh "G2" in
destruct (join_public Heql) as [G1 G2];
rewrite G1 in *; rewrite G2 in ×
end); try reflexivity; eauto; firstorder;
(repeat match goal with
| [IH : aeval s1 ?a = aeval s2 ?a ⊢ _] ⇒ rewrite IH
end);
(repeat match goal with
| [IH : beval s1 ?b = beval s2 ?b ⊢ _] ⇒ rewrite IH
end); reflexivity.
Qed.
Theorem noninterferent_aexp : ∀ {P s1 s2 a},
pub_equiv P s1 s2 →
P ⊢a- a \in public →
aeval s1 a = aeval s2 a.
Proof.
intros P s1 s2 a Heq Ht. remember public as l.
generalize dependent Heql. generalize dependent l.
apply noninterferent_aexp_bexp. assumption.
Qed.
Theorem noninterferent_bexp : ∀ {P s1 s2 b},
pub_equiv P s1 s2 →
P ⊢b- b \in public →
beval s1 b = beval s2 b.
Proof.
intros P s1 s2 b Heq Ht. remember public as l.
generalize dependent Heql. generalize dependent l.
apply noninterferent_aexp_bexp. assumption.
Qed.
(CT_Skip) | |
P ;; PA ⊢ct- skip |
P ⊢a- a ∈ l can_flow l (P X) = true | (CT_Asgn) |
P ;; PA ⊢ct- X := a |
P ;; PA ⊢ct- c1 P ;; PA ⊢ct- c2 | (CT_Seq) |
P ;; PA ⊢ct- c1;c2 |
P ⊢b- b ∈ public P ;; PA ⊢ct- c1 P ;; PA ⊢ct- c2 | (CT_If) |
P ;; PA ⊢ct- if b then c1 else c2 |
P ⊢b- b ∈ public P ⊢ct- c | (CT_While) |
P ;; PA ⊢ct- while b then c end |
P ⊢a- i ∈ public can_flow (PA a) (P x) = true | (CT_ARead) |
P ;; PA ⊢ct- x <- a[[i]] |
P ⊢a- i ∈ public P ⊢a- e ∈ l can_flow l (PA a) = true | (CT_AWrite) |
P ;; PA ⊢ct- a[i] <- e |
Reserved Notation "P ';;' PA '⊢ct-' c" (at level 40).
Inductive ct_well_typed (P:pub_vars) (PA:pub_arrs) : com → Prop :=
| CT_Skip :
P ;; PA ⊢ct- <{{ skip }}>
| CT_Asgn : ∀ X a l,
P ⊢a- a \in l →
can_flow l (P X) = true →
P ;; PA ⊢ct- <{{ X := a }}>
| CT_Seq : ∀ c1 c2,
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- c2 →
P ;; PA ⊢ct- <{{ c1 ; c2 }}>
| CT_If : ∀ b c1 c2,
P ⊢b- b \in public →
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- c2 →
P ;; PA ⊢ct- <{{ if b then c1 else c2 end }}>
| CT_While : ∀ b c1,
P ⊢b- b \in public →
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- <{{ while b do c1 end }}>
| CT_ARead : ∀ x a i,
P ⊢a- i \in public →
can_flow (PA a) (P x) = true →
P ;; PA ⊢ct- <{{ x <- a[[i]] }}>
| CT_AWrite : ∀ a i e l,
P ⊢a- i \in public →
P ⊢a- e \in l →
can_flow l (PA a) = true →
P ;; PA ⊢ct- <{{ a[i] <- e }}>
where "P ;; PA '⊢ct-' c" := (ct_well_typed P PA c).
Inductive ct_well_typed (P:pub_vars) (PA:pub_arrs) : com → Prop :=
| CT_Skip :
P ;; PA ⊢ct- <{{ skip }}>
| CT_Asgn : ∀ X a l,
P ⊢a- a \in l →
can_flow l (P X) = true →
P ;; PA ⊢ct- <{{ X := a }}>
| CT_Seq : ∀ c1 c2,
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- c2 →
P ;; PA ⊢ct- <{{ c1 ; c2 }}>
| CT_If : ∀ b c1 c2,
P ⊢b- b \in public →
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- c2 →
P ;; PA ⊢ct- <{{ if b then c1 else c2 end }}>
| CT_While : ∀ b c1,
P ⊢b- b \in public →
P ;; PA ⊢ct- c1 →
P ;; PA ⊢ct- <{{ while b do c1 end }}>
| CT_ARead : ∀ x a i,
P ⊢a- i \in public →
can_flow (PA a) (P x) = true →
P ;; PA ⊢ct- <{{ x <- a[[i]] }}>
| CT_AWrite : ∀ a i e l,
P ⊢a- i \in public →
P ⊢a- e \in l →
can_flow l (PA a) = true →
P ;; PA ⊢ct- <{{ a[i] <- e }}>
where "P ;; PA '⊢ct-' c" := (ct_well_typed P PA c).
Theorem ct_well_typed_noninterferent :
∀ P PA c s1 s2 a1 a2 s1' s2' a1' a2' os1 os2,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
pub_equiv PA a1 a2 →
<(s1, a1)> =[ c ]=> <(s1', a1', os1)> →
<(s2, a2)> =[ c ]=> <(s2', a2', os2)> →
pub_equiv P s1' s2' ∧ pub_equiv PA a1' a2'.
Theorem ct_well_typed_ct_secure : ∀ P PA c,
P ;; PA ⊢ct- c →
ct_secure P PA c.
∀ P PA c s1 s2 a1 a2 s1' s2' a1' a2' os1 os2,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
pub_equiv PA a1 a2 →
<(s1, a1)> =[ c ]=> <(s1', a1', os1)> →
<(s2, a2)> =[ c ]=> <(s2', a2', os2)> →
pub_equiv P s1' s2' ∧ pub_equiv PA a1' a2'.
Proof.
intros P PA c s1 s2 a1 a2 s1' s2' a1' a2' os1 os2
Hwt Heq Haeq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent a2'. generalize dependent a2.
generalize dependent os2.
induction Heval1; intros os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- split; auto.
- split; auto.
intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
eapply noninterferent_aexp; eauto.
subst. rewrite Hy in H11.
unfold can_flow in H11. simpl in H11.
destruct l; try discriminate. auto.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- edestruct IHHeval1_2; eauto.
+ eapply IHHeval1_1; eauto.
+ eapply IHHeval1_1; eauto.
- eapply IHHeval1; eauto.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- eapply IHHeval1; eassumption.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* NEW CASE: ARead *)
split; eauto.
erewrite noninterferent_aexp; eauto.
intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
subst. rewrite Hy in ×.
rewrite Haeq; eauto. now destruct (PA a).
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- (* NEW CASE: AWrite *)
split; eauto.
erewrite noninterferent_aexp; eauto.
intros y Hy.
destruct (String.eqb_spec a y) as [Hay | Hay].
+ rewrite Hay. do 2 rewrite t_update_eq.
subst. rewrite Hy in ×.
rewrite Haeq; eauto.
erewrite (noninterferent_aexp Heq); eauto. now destruct l.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hay).
apply Haeq. apply Hy.
Qed.
intros P PA c s1 s2 a1 a2 s1' s2' a1' a2' os1 os2
Hwt Heq Haeq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent a2'. generalize dependent a2.
generalize dependent os2.
induction Heval1; intros os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- split; auto.
- split; auto.
intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
eapply noninterferent_aexp; eauto.
subst. rewrite Hy in H11.
unfold can_flow in H11. simpl in H11.
destruct l; try discriminate. auto.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- edestruct IHHeval1_2; eauto.
+ eapply IHHeval1_1; eauto.
+ eapply IHHeval1_1; eauto.
- eapply IHHeval1; eauto.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- eapply IHHeval1; eassumption.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* NEW CASE: ARead *)
split; eauto.
erewrite noninterferent_aexp; eauto.
intros y Hy. destruct (String.eqb_spec x y) as [Hxy | Hxy].
+ rewrite Hxy. do 2 rewrite t_update_eq.
subst. rewrite Hy in ×.
rewrite Haeq; eauto. now destruct (PA a).
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hxy).
apply Heq. apply Hy.
- (* NEW CASE: AWrite *)
split; eauto.
erewrite noninterferent_aexp; eauto.
intros y Hy.
destruct (String.eqb_spec a y) as [Hay | Hay].
+ rewrite Hay. do 2 rewrite t_update_eq.
subst. rewrite Hy in ×.
rewrite Haeq; eauto.
erewrite (noninterferent_aexp Heq); eauto. now destruct l.
+ do 2 rewrite (t_update_neq _ _ _ _ _ Hay).
apply Haeq. apply Hy.
Qed.
Theorem ct_well_typed_ct_secure : ∀ P PA c,
P ;; PA ⊢ct- c →
ct_secure P PA c.
Proof.
unfold ct_secure.
intros P PA c Hwt st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2
Heq Haeq Heval1 Heval2.
generalize dependent st2'. generalize dependent st2.
generalize dependent ast2'. generalize dependent ast2.
generalize dependent os2.
induction Heval1; intros os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- reflexivity.
- reflexivity.
- erewrite IHHeval1_2; [erewrite IHHeval1_1 | | | |];
try reflexivity; try eassumption.
+ eapply ct_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption | eassumption ];
eassumption.
+ eapply ct_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption | eassumption ];
eassumption.
- f_equal. eapply IHHeval1; try eassumption.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- f_equal. eapply IHHeval1; eassumption.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* NEW CASE: ARead *)
f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* NEW CASE: AWrite *)
f_equal. f_equal. eapply noninterferent_aexp; eassumption.
Qed.
unfold ct_secure.
intros P PA c Hwt st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2
Heq Haeq Heval1 Heval2.
generalize dependent st2'. generalize dependent st2.
generalize dependent ast2'. generalize dependent ast2.
generalize dependent os2.
induction Heval1; intros os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- reflexivity.
- reflexivity.
- erewrite IHHeval1_2; [erewrite IHHeval1_1 | | | |];
try reflexivity; try eassumption.
+ eapply ct_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption | eassumption ];
eassumption.
+ eapply ct_well_typed_noninterferent;
[ | eassumption | eassumption | eassumption | eassumption ];
eassumption.
- f_equal. eapply IHHeval1; try eassumption.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- rewrite (noninterferent_bexp Heq H13) in H.
rewrite H in H8. discriminate H8.
- f_equal. eapply IHHeval1; eassumption.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* NEW CASE: ARead *)
f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* NEW CASE: AWrite *)
f_equal. f_equal. eapply noninterferent_aexp; eassumption.
Qed.
Speculative constant-time
Print observation.
We additionally add adversary provided directions to our semantics, which
control speculation behavior.
Inductive direction :=
| DStep
| DForce
| DLoad (a : string) (i : nat)
| DStore (a : string) (i : nat).
Definition dirs := list direction.
Reserved Notation
"'<(' st , ast , b , ds ')>' '=[' c ']=>' '<(' stt , astt , bb , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive spec_eval : com → state → astate → bool → dirs →
state → astate → bool → obs → Prop :=
| Spec_Skip : ∀ st ast b,
<(st, ast, b, [])> =[ skip ]=> <(st, ast, b, [])>
| Spec_Asgn : ∀ st ast b e n x,
aeval st e = n →
<(st, ast, b, [])> =[ x := e ]=> <(x !-> n; st, ast, b, [])>
| Spec_Seq : ∀ c1 c2 st ast b st' ast' b' st'' ast'' b'' os1 os2 ds1 ds2,
<(st, ast, b, ds1)> =[ c1 ]=> <(st', ast', b', os1)> →
<(st', ast', b', ds2)> =[ c2 ]=> <(st'', ast'', b'', os2)> →
<(st, ast, b, ds1++ds2)> =[ c1 ; c2 ]=> <(st'', ast'', b'', os2++os1)>
| Spec_If : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
<(st, ast, b, ds)> =[ match beval st be with
| true ⇒ c1
| false ⇒ c2 end ]=> <(st', ast', b', os1)> →
<(st, ast, b, DStep :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1 ++ [OBranch (beval st be)])>
| Spec_If_F : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
<(st, ast, true, ds)> =[ match beval st be with
| true ⇒ c2 (* <-- branches swapped *)
| false ⇒ c1 end ]=> <(st', ast', b', os1)> →
<(st, ast, b, DForce :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1 ++ [OBranch (beval st be)])>
| Spec_While : ∀ be st ast b ds st' ast' b' os c,
<(st, ast, b, ds)> =[ if be then c; while be do c end else skip end ]=>
<(st', ast', b', os)> →
<(st, ast, b, ds)> =[ while be do c end ]=> <(st', ast', b', os)>
| Spec_ARead : ∀ st ast b x a ie i,
aeval st ie = i →
i < length (ast a) →
<(st, ast, b, [DStep])> =[ x <- a[[ie]] ]=>
<(x !-> nth i (ast a) 0; st, ast, b, [OARead a i])>
| Spec_ARead_U : ∀ st ast x a ie i a' i',
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
<(st, ast, true, [DLoad a' i'])> =[ x <- a[[ie]] ]=>
<(x !-> nth i' (ast a') 0; st, ast, true, [OARead a i])>
| Spec_Write : ∀ st ast b a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
<(st, ast, b, [DStep])> =[ a[ie] <- e ]=>
<(st, a !-> upd i (ast a) n; ast, b, [OAWrite a i])>
| Spec_Write_U : ∀ st ast a ie i e n a' i',
aeval st e = n →
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
<(st, ast, true, [DStore a' i'])> =[ a[ie] <- e ]=>
<(st, a' !-> upd i' (ast a') n; ast, true, [OAWrite a i])>
where "<( st , ast , b , ds )> =[ c ]=> <( stt , astt , bb , os )>" :=
(spec_eval c st ast b ds stt astt bb os).
| DStep
| DForce
| DLoad (a : string) (i : nat)
| DStore (a : string) (i : nat).
Definition dirs := list direction.
Reserved Notation
"'<(' st , ast , b , ds ')>' '=[' c ']=>' '<(' stt , astt , bb , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive spec_eval : com → state → astate → bool → dirs →
state → astate → bool → obs → Prop :=
| Spec_Skip : ∀ st ast b,
<(st, ast, b, [])> =[ skip ]=> <(st, ast, b, [])>
| Spec_Asgn : ∀ st ast b e n x,
aeval st e = n →
<(st, ast, b, [])> =[ x := e ]=> <(x !-> n; st, ast, b, [])>
| Spec_Seq : ∀ c1 c2 st ast b st' ast' b' st'' ast'' b'' os1 os2 ds1 ds2,
<(st, ast, b, ds1)> =[ c1 ]=> <(st', ast', b', os1)> →
<(st', ast', b', ds2)> =[ c2 ]=> <(st'', ast'', b'', os2)> →
<(st, ast, b, ds1++ds2)> =[ c1 ; c2 ]=> <(st'', ast'', b'', os2++os1)>
| Spec_If : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
<(st, ast, b, ds)> =[ match beval st be with
| true ⇒ c1
| false ⇒ c2 end ]=> <(st', ast', b', os1)> →
<(st, ast, b, DStep :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1 ++ [OBranch (beval st be)])>
| Spec_If_F : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
<(st, ast, true, ds)> =[ match beval st be with
| true ⇒ c2 (* <-- branches swapped *)
| false ⇒ c1 end ]=> <(st', ast', b', os1)> →
<(st, ast, b, DForce :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1 ++ [OBranch (beval st be)])>
| Spec_While : ∀ be st ast b ds st' ast' b' os c,
<(st, ast, b, ds)> =[ if be then c; while be do c end else skip end ]=>
<(st', ast', b', os)> →
<(st, ast, b, ds)> =[ while be do c end ]=> <(st', ast', b', os)>
| Spec_ARead : ∀ st ast b x a ie i,
aeval st ie = i →
i < length (ast a) →
<(st, ast, b, [DStep])> =[ x <- a[[ie]] ]=>
<(x !-> nth i (ast a) 0; st, ast, b, [OARead a i])>
| Spec_ARead_U : ∀ st ast x a ie i a' i',
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
<(st, ast, true, [DLoad a' i'])> =[ x <- a[[ie]] ]=>
<(x !-> nth i' (ast a') 0; st, ast, true, [OARead a i])>
| Spec_Write : ∀ st ast b a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
<(st, ast, b, [DStep])> =[ a[ie] <- e ]=>
<(st, a !-> upd i (ast a) n; ast, b, [OAWrite a i])>
| Spec_Write_U : ∀ st ast a ie i e n a' i',
aeval st e = n →
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
<(st, ast, true, [DStore a' i'])> =[ a[ie] <- e ]=>
<(st, a' !-> upd i' (ast a') n; ast, true, [OAWrite a i])>
where "<( st , ast , b , ds )> =[ c ]=> <( stt , astt , bb , os )>" :=
(spec_eval c st ast b ds stt astt bb os).
Definition spec_ct_secure P PA c :=
∀ st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds,
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1, false, ds)> =[ c ]=> <(st1', ast1', b1', os1)> →
<(st2, ast2, false, ds)> =[ c ]=> <(st2', ast2', b2', os2)> →
os1 = os2.
∀ st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds,
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1, false, ds)> =[ c ]=> <(st1', ast1', b1', os1)> →
<(st2, ast2, false, ds)> =[ c ]=> <(st2', ast2', b2', os2)> →
os1 = os2.
Definition spec_insecure_prog :=
<{{ if Z ≤ 0 then
X <- AP[[Z]];
if X ≤ 5 then Y := 1 else Y := 0 end
else skip end }}> .
Example spec_insecure_prog_is_ct_and_spec_insecure :
∃ P PA,
P ;; PA ⊢ct- spec_insecure_prog ∧ ¬ (spec_ct_secure P PA spec_insecure_prog) .
Proof.
∃ (X!-> public; Y!-> public; Z!-> public; _ !-> secret).
∃ (AP!-> public; AS!-> secret; _ !-> public).
split; unfold spec_insecure_prog.
- repeat econstructor;
replace (public) with (join public public) at 4 by reflexivity;
repeat constructor.
- intros H.
remember (Z!-> 1; _ !-> 0) as st.
remember (AP!-> [1]; AS!-> [1;3]; _ !-> []) as ast1.
remember (AP!-> [1]; AS!-> [1;7]; _ !-> []) as ast2.
remember (DForce :: ([DLoad "AS" 1] ++ [DStep])) as ds.
remember (([OBranch true] ++ [OARead "AP" 1]) ++ [OBranch false]) as os1.
remember (([OBranch false] ++ [OARead "AP" 1])++ [OBranch false]) as os2.
assert (Heval1:
<(st, ast1, false, ds )> =[ spec_insecure_prog ]=> <( Y!-> 1; X!-> 3; st, ast1, true, os1)>).
{ unfold spec_insecure_prog; subst.
eapply Spec_If_F. eapply Spec_Seq.
- eapply Spec_ARead_U; simpl; eauto.
- replace ([OBranch true]) with ([] ++ [OBranch true]) by reflexivity.
eapply Spec_If; simpl. eapply Spec_Asgn; eauto. }
assert (Heval2:
<(st, ast2, false, ds )> =[ spec_insecure_prog ]=> <( Y!-> 0; X!-> 7; st, ast2, true, os2)>).
{ unfold spec_insecure_prog; subst.
eapply Spec_If_F. eapply Spec_Seq.
- eapply Spec_ARead_U; simpl; eauto.
- replace ([OBranch false]) with ([] ++ [OBranch false]) by reflexivity.
eapply Spec_If; simpl. eapply Spec_Asgn; eauto. }
subst. eapply H in Heval1.
+ eapply Heval1 in Heval2. inversion Heval2.
+ eapply pub_equiv_refl.
+ intros x Hx. destruct (String.eqb_spec "AP" x) as [HeqAP | HneqAP];
destruct (String.eqb_spec "AS" x) as [HeqAS | HneqAS].
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. rewrite t_update_neq in Hx; [| assumption].
rewrite t_update_eq in Hx. discriminate.
× do 4 (rewrite t_update_neq; [| assumption]). reflexivity.
Qed.
Lemma speculation_bit_monotonic : ∀ c s a b ds s' a' b' os,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = true →
b' = true.
Proof. intros c s a b ds s' a' b' os Heval Hb. induction Heval; eauto. Qed.
Lemma speculation_needs_force : ∀ c s a b ds s' a' b' os,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = false →
b' = true →
In DForce ds.
Proof.
intros c s a b ds s' a' b' os Heval Hb Hb'.
induction Heval; subst; simpl; eauto; try discriminate.
apply in_or_app. destruct b'; eauto.
Qed.
Lemma unsafe_access_needs_speculation : ∀ c s a b ds s' a' b' os ax i,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
In (DLoad ax i) ds ∨ In (DStore ax i) ds →
b = true ∨ In DForce ds.
Proof.
intros c s a b ds s' a' b' os ax i Heval Hin.
induction Heval; simpl in *; try tauto; try (firstorder; discriminate).
- destruct Hin as [Hin | Hin].
+ apply in_app_or in Hin. destruct Hin as [Hin | Hin].
× specialize (IHHeval1 (or_introl _ Hin)). destruct IHHeval1; try tauto.
right. apply in_or_app. tauto.
× specialize (IHHeval2 (or_introl _ Hin)). destruct IHHeval2; try tauto.
{ destruct b eqn:Eq; try tauto.
(* slightly more interesting case, the rest very boring *)
right. apply speculation_needs_force in Heval1; [| reflexivity|assumption].
apply in_or_app. tauto. }
{ right. apply in_or_app. tauto. }
+ (* very symmetric, mostly copy paste *)
apply in_app_or in Hin. destruct Hin as [Hin | Hin].
× specialize (IHHeval1 (or_intror _ Hin)). destruct IHHeval1; try tauto.
right. apply in_or_app. tauto.
× specialize (IHHeval2 (or_intror _ Hin)). destruct IHHeval2; try tauto.
{ destruct b eqn:Eq; try tauto.
right. apply speculation_needs_force in Heval1; [| reflexivity|assumption].
apply in_or_app. tauto. }
{ right. apply in_or_app. tauto. }
Qed.
<{{ if Z ≤ 0 then
X <- AP[[Z]];
if X ≤ 5 then Y := 1 else Y := 0 end
else skip end }}> .
Example spec_insecure_prog_is_ct_and_spec_insecure :
∃ P PA,
P ;; PA ⊢ct- spec_insecure_prog ∧ ¬ (spec_ct_secure P PA spec_insecure_prog) .
Proof.
∃ (X!-> public; Y!-> public; Z!-> public; _ !-> secret).
∃ (AP!-> public; AS!-> secret; _ !-> public).
split; unfold spec_insecure_prog.
- repeat econstructor;
replace (public) with (join public public) at 4 by reflexivity;
repeat constructor.
- intros H.
remember (Z!-> 1; _ !-> 0) as st.
remember (AP!-> [1]; AS!-> [1;3]; _ !-> []) as ast1.
remember (AP!-> [1]; AS!-> [1;7]; _ !-> []) as ast2.
remember (DForce :: ([DLoad "AS" 1] ++ [DStep])) as ds.
remember (([OBranch true] ++ [OARead "AP" 1]) ++ [OBranch false]) as os1.
remember (([OBranch false] ++ [OARead "AP" 1])++ [OBranch false]) as os2.
assert (Heval1:
<(st, ast1, false, ds )> =[ spec_insecure_prog ]=> <( Y!-> 1; X!-> 3; st, ast1, true, os1)>).
{ unfold spec_insecure_prog; subst.
eapply Spec_If_F. eapply Spec_Seq.
- eapply Spec_ARead_U; simpl; eauto.
- replace ([OBranch true]) with ([] ++ [OBranch true]) by reflexivity.
eapply Spec_If; simpl. eapply Spec_Asgn; eauto. }
assert (Heval2:
<(st, ast2, false, ds )> =[ spec_insecure_prog ]=> <( Y!-> 0; X!-> 7; st, ast2, true, os2)>).
{ unfold spec_insecure_prog; subst.
eapply Spec_If_F. eapply Spec_Seq.
- eapply Spec_ARead_U; simpl; eauto.
- replace ([OBranch false]) with ([] ++ [OBranch false]) by reflexivity.
eapply Spec_If; simpl. eapply Spec_Asgn; eauto. }
subst. eapply H in Heval1.
+ eapply Heval1 in Heval2. inversion Heval2.
+ eapply pub_equiv_refl.
+ intros x Hx. destruct (String.eqb_spec "AP" x) as [HeqAP | HneqAP];
destruct (String.eqb_spec "AS" x) as [HeqAS | HneqAS].
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. rewrite t_update_neq in Hx; [| assumption].
rewrite t_update_eq in Hx. discriminate.
× do 4 (rewrite t_update_neq; [| assumption]). reflexivity.
Qed.
Lemma speculation_bit_monotonic : ∀ c s a b ds s' a' b' os,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = true →
b' = true.
Proof. intros c s a b ds s' a' b' os Heval Hb. induction Heval; eauto. Qed.
Lemma speculation_needs_force : ∀ c s a b ds s' a' b' os,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = false →
b' = true →
In DForce ds.
Proof.
intros c s a b ds s' a' b' os Heval Hb Hb'.
induction Heval; subst; simpl; eauto; try discriminate.
apply in_or_app. destruct b'; eauto.
Qed.
Lemma unsafe_access_needs_speculation : ∀ c s a b ds s' a' b' os ax i,
<(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
In (DLoad ax i) ds ∨ In (DStore ax i) ds →
b = true ∨ In DForce ds.
Proof.
intros c s a b ds s' a' b' os ax i Heval Hin.
induction Heval; simpl in *; try tauto; try (firstorder; discriminate).
- destruct Hin as [Hin | Hin].
+ apply in_app_or in Hin. destruct Hin as [Hin | Hin].
× specialize (IHHeval1 (or_introl _ Hin)). destruct IHHeval1; try tauto.
right. apply in_or_app. tauto.
× specialize (IHHeval2 (or_introl _ Hin)). destruct IHHeval2; try tauto.
{ destruct b eqn:Eq; try tauto.
(* slightly more interesting case, the rest very boring *)
right. apply speculation_needs_force in Heval1; [| reflexivity|assumption].
apply in_or_app. tauto. }
{ right. apply in_or_app. tauto. }
+ (* very symmetric, mostly copy paste *)
apply in_app_or in Hin. destruct Hin as [Hin | Hin].
× specialize (IHHeval1 (or_intror _ Hin)). destruct IHHeval1; try tauto.
right. apply in_or_app. tauto.
× specialize (IHHeval2 (or_intror _ Hin)). destruct IHHeval2; try tauto.
{ destruct b eqn:Eq; try tauto.
right. apply speculation_needs_force in Heval1; [| reflexivity|assumption].
apply in_or_app. tauto. }
{ right. apply in_or_app. tauto. }
Qed.
We can recover sequential execution from spec_eval if there is no
speculation, so all directives are DStep and speculation flag starts false.
Definition seq_spec_eval (c :com) (st :state) (ast :astate)
(st' :state) (ast' :astate) (os :obs) : Prop :=
∃ ds, (∀ d, In d ds → d = DStep) ∧
<(st, ast, false, ds)> =[ c ]=> <(st', ast', false, os)>.
(* Sequential execution is equivalent to constant-time evaluation, i.e. cteval. *)
Lemma cteval_equiv_seq_spec_eval : ∀ c st ast st' ast' os,
seq_spec_eval c st ast st' ast' os ↔ <(st, ast)> =[ c ]=> <(st', ast', os)> .
Proof.
intros c st ast st' ast' os. unfold seq_spec_eval. split; intros H.
- (* -> *)
destruct H as [ds [Hstep Heval] ].
induction Heval; try (now econstructor; eauto).
+ (* Spec_Seq *) eapply CTE_Seq.
× eapply IHHeval1. intros d HdIn.
assert (L: In d ds1 ∨ In d ds2) by (left; assumption).
eapply in_or_app in L. eapply Hstep in L. assumption.
× eapply IHHeval2. intros d HdIn.
assert (L: In d ds1 ∨ In d ds2) by (right; assumption).
eapply in_or_app in L. eapply Hstep in L. assumption.
+ (* Spec_If *) destruct (beval st be) eqn:Eqbe.
× eapply CTE_IfTrue; [assumption |].
eapply IHHeval. intros d HdIn.
apply (in_cons DStep d) in HdIn. apply Hstep in HdIn. assumption.
× eapply CTE_IfFalse; [assumption |].
eapply IHHeval. intros d HdIn.
apply (in_cons DStep d) in HdIn. apply Hstep in HdIn. assumption.
+ (* Spec_IF_F; contra *) exfalso.
assert (L: ~(DForce = DStep)) by discriminate. apply L.
apply (Hstep DForce). apply in_eq.
+ (* Spec_ARead_U; contra *) exfalso.
assert (L: ~(DLoad a' i' = DStep)) by discriminate. apply L.
apply (Hstep (DLoad a' i')). apply in_eq.
+ (* Spec_AWrite_U; contra *) exfalso.
assert (L: ~(DStore a' i' = DStep)) by discriminate. apply L.
apply (Hstep (DStore a' i')). apply in_eq.
- (* <- *)
induction H.
+ (* CTE_Skip *)
∃ []; split; [| eapply Spec_Skip].
simpl. intros d Contra; destruct Contra.
+ (* CTE_Asgn *)
∃ []; split; [| eapply Spec_Asgn; assumption].
simpl. intros d Contra; destruct Contra.
+ (* CTE_Seq *)
destruct IHcteval1 as [ds1 [Hds1 Heval1] ].
destruct IHcteval2 as [ds2 [Hds2 Heval2] ].
∃ (ds1 ++ ds2). split; [| eapply Spec_Seq; eassumption].
intros d HdIn. apply in_app_or in HdIn. destruct HdIn as [Hin1 | Hin2].
× apply Hds1 in Hin1. assumption.
× apply Hds2 in Hin2. assumption.
+ (* CTE_IfTrue *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ (DStep :: ds). split.
× intros d HdIn. apply in_inv in HdIn.
destruct HdIn as [Heq | HIn]; [symmetry; assumption | apply Hds; assumption].
× rewrite <- H. eapply Spec_If. rewrite H; simpl. assumption.
+ (* CTE_IfFalse *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ (DStep :: ds). split.
× intros d HdIn. apply in_inv in HdIn.
destruct HdIn as [Heq | HIn]; [symmetry; assumption | apply Hds; assumption].
× rewrite <- H. eapply Spec_If. rewrite H; simpl. assumption.
+ (* CTE_While *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ ds.
split; [assumption |]. eapply Spec_While; assumption.
+ (* CTE_ARead *)
∃ [DStep]. split.
× simpl. intros d HdIn. destruct HdIn as [Heq | Contra]; [| destruct Contra].
symmetry. assumption.
× eapply Spec_ARead; assumption.
+ (* CTE_AWrite *)
∃ [DStep]. split.
× simpl. intros d HdIn. destruct HdIn as [Heq | Contra]; [| destruct Contra].
symmetry. assumption.
× eapply Spec_Write; assumption.
Qed.
Lemma ct_well_typed_seq_spec_eval_ct_secure :
∀ P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2,
P ;; PA ⊢ct- c →
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
seq_spec_eval c st1 ast1 st1' ast1' os1 →
seq_spec_eval c st2 ast2 st2' ast2' os2 →
os1 = os2.
Proof.
intros P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2 Hwt
HP HPA Heval1 Heval2.
apply cteval_equiv_seq_spec_eval in Heval1, Heval2.
apply ct_well_typed_ct_secure in Hwt. eapply Hwt; eauto.
Qed.
(st' :state) (ast' :astate) (os :obs) : Prop :=
∃ ds, (∀ d, In d ds → d = DStep) ∧
<(st, ast, false, ds)> =[ c ]=> <(st', ast', false, os)>.
(* Sequential execution is equivalent to constant-time evaluation, i.e. cteval. *)
Lemma cteval_equiv_seq_spec_eval : ∀ c st ast st' ast' os,
seq_spec_eval c st ast st' ast' os ↔ <(st, ast)> =[ c ]=> <(st', ast', os)> .
Proof.
intros c st ast st' ast' os. unfold seq_spec_eval. split; intros H.
- (* -> *)
destruct H as [ds [Hstep Heval] ].
induction Heval; try (now econstructor; eauto).
+ (* Spec_Seq *) eapply CTE_Seq.
× eapply IHHeval1. intros d HdIn.
assert (L: In d ds1 ∨ In d ds2) by (left; assumption).
eapply in_or_app in L. eapply Hstep in L. assumption.
× eapply IHHeval2. intros d HdIn.
assert (L: In d ds1 ∨ In d ds2) by (right; assumption).
eapply in_or_app in L. eapply Hstep in L. assumption.
+ (* Spec_If *) destruct (beval st be) eqn:Eqbe.
× eapply CTE_IfTrue; [assumption |].
eapply IHHeval. intros d HdIn.
apply (in_cons DStep d) in HdIn. apply Hstep in HdIn. assumption.
× eapply CTE_IfFalse; [assumption |].
eapply IHHeval. intros d HdIn.
apply (in_cons DStep d) in HdIn. apply Hstep in HdIn. assumption.
+ (* Spec_IF_F; contra *) exfalso.
assert (L: ~(DForce = DStep)) by discriminate. apply L.
apply (Hstep DForce). apply in_eq.
+ (* Spec_ARead_U; contra *) exfalso.
assert (L: ~(DLoad a' i' = DStep)) by discriminate. apply L.
apply (Hstep (DLoad a' i')). apply in_eq.
+ (* Spec_AWrite_U; contra *) exfalso.
assert (L: ~(DStore a' i' = DStep)) by discriminate. apply L.
apply (Hstep (DStore a' i')). apply in_eq.
- (* <- *)
induction H.
+ (* CTE_Skip *)
∃ []; split; [| eapply Spec_Skip].
simpl. intros d Contra; destruct Contra.
+ (* CTE_Asgn *)
∃ []; split; [| eapply Spec_Asgn; assumption].
simpl. intros d Contra; destruct Contra.
+ (* CTE_Seq *)
destruct IHcteval1 as [ds1 [Hds1 Heval1] ].
destruct IHcteval2 as [ds2 [Hds2 Heval2] ].
∃ (ds1 ++ ds2). split; [| eapply Spec_Seq; eassumption].
intros d HdIn. apply in_app_or in HdIn. destruct HdIn as [Hin1 | Hin2].
× apply Hds1 in Hin1. assumption.
× apply Hds2 in Hin2. assumption.
+ (* CTE_IfTrue *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ (DStep :: ds). split.
× intros d HdIn. apply in_inv in HdIn.
destruct HdIn as [Heq | HIn]; [symmetry; assumption | apply Hds; assumption].
× rewrite <- H. eapply Spec_If. rewrite H; simpl. assumption.
+ (* CTE_IfFalse *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ (DStep :: ds). split.
× intros d HdIn. apply in_inv in HdIn.
destruct HdIn as [Heq | HIn]; [symmetry; assumption | apply Hds; assumption].
× rewrite <- H. eapply Spec_If. rewrite H; simpl. assumption.
+ (* CTE_While *)
destruct IHcteval as [ds [Hds Heval] ]. ∃ ds.
split; [assumption |]. eapply Spec_While; assumption.
+ (* CTE_ARead *)
∃ [DStep]. split.
× simpl. intros d HdIn. destruct HdIn as [Heq | Contra]; [| destruct Contra].
symmetry. assumption.
× eapply Spec_ARead; assumption.
+ (* CTE_AWrite *)
∃ [DStep]. split.
× simpl. intros d HdIn. destruct HdIn as [Heq | Contra]; [| destruct Contra].
symmetry. assumption.
× eapply Spec_Write; assumption.
Qed.
Lemma ct_well_typed_seq_spec_eval_ct_secure :
∀ P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2,
P ;; PA ⊢ct- c →
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
seq_spec_eval c st1 ast1 st1' ast1' os1 →
seq_spec_eval c st2 ast2 st2' ast2' os2 →
os1 = os2.
Proof.
intros P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' os1 os2 Hwt
HP HPA Heval1 Heval2.
apply cteval_equiv_seq_spec_eval in Heval1, Heval2.
apply ct_well_typed_ct_secure in Hwt. eapply Hwt; eauto.
Qed.
Selective SLH transformation that we will show enforces speculative
constant-time security.
Fixpoint sel_slh (P:pub_vars) (c:com) :=
(match c with
| <{{skip}}> ⇒ <{{skip}}>
| <{{x := e}}> ⇒ <{{x := e}}>
| <{{c1; c2}}> ⇒ <{{ sel_slh P c1; sel_slh P c2}}>
| <{{if be then c1 else c2 end}}> ⇒
<{{if be then "b" := (be ? "b" : 1); sel_slh P c1
else "b" := (be ? 1 : "b"); sel_slh P c2 end}}>
| <{{while be do c end}}> ⇒
<{{while be do "b" := (be ? "b" : 1); sel_slh P c end;
"b" := (be ? 1 : "b")}}>
| <{{x <- a[[i]]}}> ⇒
if P x then <{{x <- a[[i]]; x := ("b" = 1) ? 0 : x}}>
else <{{x <- a[[i]]}}>
| <{{a[i] <- e}}> ⇒ <{{a[i] <- e}}>
end)%string.
(match c with
| <{{skip}}> ⇒ <{{skip}}>
| <{{x := e}}> ⇒ <{{x := e}}>
| <{{c1; c2}}> ⇒ <{{ sel_slh P c1; sel_slh P c2}}>
| <{{if be then c1 else c2 end}}> ⇒
<{{if be then "b" := (be ? "b" : 1); sel_slh P c1
else "b" := (be ? 1 : "b"); sel_slh P c2 end}}>
| <{{while be do c end}}> ⇒
<{{while be do "b" := (be ? "b" : 1); sel_slh P c end;
"b" := (be ? 1 : "b")}}>
| <{{x <- a[[i]]}}> ⇒
if P x then <{{x <- a[[i]]; x := ("b" = 1) ? 0 : x}}>
else <{{x <- a[[i]]}}>
| <{{a[i] <- e}}> ⇒ <{{a[i] <- e}}>
end)%string.
To prove this transformation secure, Spectre Declassified uses an idealized
semantics, capturing selective speculative load hardening more abstractly.
Reserved Notation
"P '⊢' '<(' st , ast , b , ds ')>' '=[' c ']=>' '<(' stt , astt , bb , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive ideal_eval (P:pub_vars) :
com → state → astate → bool → dirs →
state → astate → bool → obs → Prop :=
| Ideal_Skip : ∀ st ast b,
P ⊢ <(st, ast, b, [])> =[ skip ]=> <(st, ast, b, [])>
| Ideal_Asgn : ∀ st ast b e n x,
aeval st e = n →
P ⊢ <(st, ast, b, [])> =[ x := e ]=> <(x !-> n; st, ast, b, [])>
| Ideal_Seq : ∀ c1 c2 st ast b st' ast' b' st'' ast'' b'' os1 os2 ds1 ds2,
P ⊢ <(st, ast, b, ds1)> =[ c1 ]=> <(st', ast', b', os1)> →
P ⊢ <(st', ast', b', ds2)> =[ c2 ]=> <(st'', ast'', b'', os2)> →
P ⊢ <(st, ast, b, ds1++ds2)> =[ c1 ; c2 ]=> <(st'', ast'', b'', os2++os1)>
| Ideal_If : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
P ⊢ <(st, ast, b, ds)> =[ match beval st be with
| true ⇒ c1
| false ⇒ c2 end ]=> <(st', ast', b', os1)> →
P ⊢ <(st, ast, b, DStep :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1++[OBranch (beval st be)])>
| Ideal_If_F : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
P ⊢ <(st, ast, true, ds)> =[ match beval st be with
| true ⇒ c2 (* <-- branches swapped *)
| false ⇒ c1 end ]=> <(st', ast', b', os1)> →
P ⊢ <(st, ast, b, DForce :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1++[OBranch (beval st be)])>
| Ideal_While : ∀ be st ast b ds st' ast' b' os c,
P ⊢ <(st, ast, b, ds)> =[ if be then c; while be do c end else skip end ]=>
<(st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ while be do c end ]=> <(st', ast', b', os)>
| Ideal_ARead : ∀ st ast b x a ie i,
aeval st ie = i →
i < length (ast a) →
P ⊢ <(st, ast, b, [DStep])> =[ x <- a[[ie]] ]=>
<(x !-> if b && P x then 0 else nth i (ast a) 0; st, ast, b, [OARead a i])>
| Ideal_ARead_U : ∀ st ast x a ie i a' i',
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
P ⊢ <(st, ast, true, [DLoad a' i'])> =[ x <- a[[ie]] ]=>
<(x !-> if P x then 0 else nth i' (ast a') 0; st, ast, true, [OARead a i])>
| Ideal_Write : ∀ st ast b a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
P ⊢ <(st, ast, b, [DStep])> =[ a[ie] <- e ]=>
<(st, a !-> upd i (ast a) n; ast, b, [OAWrite a i])>
| Ideal_Write_U : ∀ st ast a ie i e n a' i',
aeval st e = n →
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
P ⊢ <(st, ast, true, [DStore a' i'])> =[ a[ie] <- e ]=>
<(st, a' !-> upd i' (ast a') n; ast, true, [OAWrite a i])>
where "P ⊢ <( st , ast , b , ds )> =[ c ]=> <( stt , astt , bb , os )>" :=
(ideal_eval P c st ast b ds stt astt bb os).
(* We show that on sequential executions this is equivalent to seq_spec_eval *)
Lemma seq_eval_ideal_eval_ind1 : ∀ P c s a b ds s' a' b' os,
(∀ d : direction, In d ds → d = DStep) →
<( s, a, b, ds )> =[ c ]=> <( s', a', b', os )> →
b = false →
b' = false →
P ⊢ <( s, a, b, ds )> =[ c ]=> <( s', a', b', os )>.
Proof.
intros P c s a b ds s' a' b' os Hds H Eb Eb'.
induction H; try constructor; eauto.
- (* Seq *)
assert(b' = false).
{ destruct b' eqn:Eqb'; [| reflexivity].
apply speculation_needs_force in H; try tauto.
assert (contra : DForce = DStep).
{ apply Hds. apply in_or_app. left. assumption. }
inversion contra. }
eapply Ideal_Seq.
× apply IHspec_eval1; eauto using in_or_app.
× apply IHspec_eval2; eauto using in_or_app.
- (* If *) simpl in Hds; eauto.
- (* If_F *) simpl in Hds.
assert (contra : DForce = DStep). { apply Hds. left. reflexivity. }
inversion contra.
- (* ARead *)
destruct b eqn:Eqb; [discriminate |].
replace (x !-> nth i (ast a) 0; st)
with (x !-> if b && P x then 0 else nth i (ast a) 0; st)
by (rewrite Eqb; simpl; reflexivity).
rewrite <- Eqb. eapply Ideal_ARead; eauto.
- (* AREad_U *) discriminate.
Qed.
Lemma speculation_needs_force_ideal : ∀ P c s a b ds s' a' b' os,
P ⊢ <(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = false →
b' = true →
In DForce ds.
Proof.
intros P c s a b ds s' a' b' os Heval Hb Hb'.
induction Heval; subst; simpl; eauto; try discriminate.
apply in_or_app. destruct b'; eauto.
Qed.
Lemma seq_eval_ideal_eval_ind2 : ∀ P c s a b ds s' a' b' os,
(∀ d : direction, In d ds → d = DStep) →
P ⊢ <( s, a, b, ds )> =[ c ]=> <( s', a', b', os )> →
b = false →
b' = false →
<( s, a, b, ds )> =[ c ]=> <( s', a', b', os )>.
Proof. (* proof really the same as gen1 *)
intros P c s a b ds s' a' b' os Hds H Eb Eb'.
induction H; try constructor; eauto.
- (* Seq *)
assert(b' = false).
{ destruct b' eqn:Eqb'; [| reflexivity].
apply speculation_needs_force_ideal in H; try tauto.
assert (contra : DForce = DStep).
{ apply Hds. apply in_or_app. left. assumption. }
inversion contra. }
eapply Spec_Seq.
× apply IHideal_eval1; eauto using in_or_app.
× apply IHideal_eval2; eauto using in_or_app.
- (* IF *) simpl in Hds; eauto.
- (* If_F *) simpl in Hds.
assert (contra : DForce = DStep). { apply Hds. left. reflexivity. }
inversion contra.
- (* ARead *)
destruct b eqn:Eqb; [discriminate |]; simpl.
eapply Spec_ARead; eauto.
- discriminate.
Qed.
Definition seq_ideal_eval (P:pub_vars) (c:com) (s:state) (a:astate)
(s':state) (a':astate) (os:obs) : Prop :=
∃ ds, (∀ d, In d ds → d = DStep) ∧
P ⊢ <(s, a, false, ds)> =[ c ]=> <(s', a', false, os)>.
Lemma seq_spec_eval_ideal_eval : ∀ P c s a s' a' os,
seq_spec_eval c s a s' a' os ↔
seq_ideal_eval P c s a s' a' os.
Proof.
intros P c s a s' a' os. unfold seq_spec_eval, seq_ideal_eval.
split; intros [ds [Hds H] ]; ∃ ds; (split; [ apply Hds |]).
- apply seq_eval_ideal_eval_ind1; eauto.
- eapply seq_eval_ideal_eval_ind2; eauto.
Qed.
"P '⊢' '<(' st , ast , b , ds ')>' '=[' c ']=>' '<(' stt , astt , bb , os ')>'"
(at level 40, c custom com at level 99,
st constr, ast constr, stt constr, astt constr at next level).
Inductive ideal_eval (P:pub_vars) :
com → state → astate → bool → dirs →
state → astate → bool → obs → Prop :=
| Ideal_Skip : ∀ st ast b,
P ⊢ <(st, ast, b, [])> =[ skip ]=> <(st, ast, b, [])>
| Ideal_Asgn : ∀ st ast b e n x,
aeval st e = n →
P ⊢ <(st, ast, b, [])> =[ x := e ]=> <(x !-> n; st, ast, b, [])>
| Ideal_Seq : ∀ c1 c2 st ast b st' ast' b' st'' ast'' b'' os1 os2 ds1 ds2,
P ⊢ <(st, ast, b, ds1)> =[ c1 ]=> <(st', ast', b', os1)> →
P ⊢ <(st', ast', b', ds2)> =[ c2 ]=> <(st'', ast'', b'', os2)> →
P ⊢ <(st, ast, b, ds1++ds2)> =[ c1 ; c2 ]=> <(st'', ast'', b'', os2++os1)>
| Ideal_If : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
P ⊢ <(st, ast, b, ds)> =[ match beval st be with
| true ⇒ c1
| false ⇒ c2 end ]=> <(st', ast', b', os1)> →
P ⊢ <(st, ast, b, DStep :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1++[OBranch (beval st be)])>
| Ideal_If_F : ∀ st ast b st' ast' b' be c1 c2 os1 ds,
P ⊢ <(st, ast, true, ds)> =[ match beval st be with
| true ⇒ c2 (* <-- branches swapped *)
| false ⇒ c1 end ]=> <(st', ast', b', os1)> →
P ⊢ <(st, ast, b, DForce :: ds)> =[ if be then c1 else c2 end ]=>
<(st', ast', b', os1++[OBranch (beval st be)])>
| Ideal_While : ∀ be st ast b ds st' ast' b' os c,
P ⊢ <(st, ast, b, ds)> =[ if be then c; while be do c end else skip end ]=>
<(st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ while be do c end ]=> <(st', ast', b', os)>
| Ideal_ARead : ∀ st ast b x a ie i,
aeval st ie = i →
i < length (ast a) →
P ⊢ <(st, ast, b, [DStep])> =[ x <- a[[ie]] ]=>
<(x !-> if b && P x then 0 else nth i (ast a) 0; st, ast, b, [OARead a i])>
| Ideal_ARead_U : ∀ st ast x a ie i a' i',
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
P ⊢ <(st, ast, true, [DLoad a' i'])> =[ x <- a[[ie]] ]=>
<(x !-> if P x then 0 else nth i' (ast a') 0; st, ast, true, [OARead a i])>
| Ideal_Write : ∀ st ast b a ie i e n,
aeval st e = n →
aeval st ie = i →
i < length (ast a) →
P ⊢ <(st, ast, b, [DStep])> =[ a[ie] <- e ]=>
<(st, a !-> upd i (ast a) n; ast, b, [OAWrite a i])>
| Ideal_Write_U : ∀ st ast a ie i e n a' i',
aeval st e = n →
aeval st ie = i →
i ≥ length (ast a) →
i' < length (ast a') →
P ⊢ <(st, ast, true, [DStore a' i'])> =[ a[ie] <- e ]=>
<(st, a' !-> upd i' (ast a') n; ast, true, [OAWrite a i])>
where "P ⊢ <( st , ast , b , ds )> =[ c ]=> <( stt , astt , bb , os )>" :=
(ideal_eval P c st ast b ds stt astt bb os).
(* We show that on sequential executions this is equivalent to seq_spec_eval *)
Lemma seq_eval_ideal_eval_ind1 : ∀ P c s a b ds s' a' b' os,
(∀ d : direction, In d ds → d = DStep) →
<( s, a, b, ds )> =[ c ]=> <( s', a', b', os )> →
b = false →
b' = false →
P ⊢ <( s, a, b, ds )> =[ c ]=> <( s', a', b', os )>.
Proof.
intros P c s a b ds s' a' b' os Hds H Eb Eb'.
induction H; try constructor; eauto.
- (* Seq *)
assert(b' = false).
{ destruct b' eqn:Eqb'; [| reflexivity].
apply speculation_needs_force in H; try tauto.
assert (contra : DForce = DStep).
{ apply Hds. apply in_or_app. left. assumption. }
inversion contra. }
eapply Ideal_Seq.
× apply IHspec_eval1; eauto using in_or_app.
× apply IHspec_eval2; eauto using in_or_app.
- (* If *) simpl in Hds; eauto.
- (* If_F *) simpl in Hds.
assert (contra : DForce = DStep). { apply Hds. left. reflexivity. }
inversion contra.
- (* ARead *)
destruct b eqn:Eqb; [discriminate |].
replace (x !-> nth i (ast a) 0; st)
with (x !-> if b && P x then 0 else nth i (ast a) 0; st)
by (rewrite Eqb; simpl; reflexivity).
rewrite <- Eqb. eapply Ideal_ARead; eauto.
- (* AREad_U *) discriminate.
Qed.
Lemma speculation_needs_force_ideal : ∀ P c s a b ds s' a' b' os,
P ⊢ <(s, a, b, ds)> =[ c ]=> <(s', a', b', os)> →
b = false →
b' = true →
In DForce ds.
Proof.
intros P c s a b ds s' a' b' os Heval Hb Hb'.
induction Heval; subst; simpl; eauto; try discriminate.
apply in_or_app. destruct b'; eauto.
Qed.
Lemma seq_eval_ideal_eval_ind2 : ∀ P c s a b ds s' a' b' os,
(∀ d : direction, In d ds → d = DStep) →
P ⊢ <( s, a, b, ds )> =[ c ]=> <( s', a', b', os )> →
b = false →
b' = false →
<( s, a, b, ds )> =[ c ]=> <( s', a', b', os )>.
Proof. (* proof really the same as gen1 *)
intros P c s a b ds s' a' b' os Hds H Eb Eb'.
induction H; try constructor; eauto.
- (* Seq *)
assert(b' = false).
{ destruct b' eqn:Eqb'; [| reflexivity].
apply speculation_needs_force_ideal in H; try tauto.
assert (contra : DForce = DStep).
{ apply Hds. apply in_or_app. left. assumption. }
inversion contra. }
eapply Spec_Seq.
× apply IHideal_eval1; eauto using in_or_app.
× apply IHideal_eval2; eauto using in_or_app.
- (* IF *) simpl in Hds; eauto.
- (* If_F *) simpl in Hds.
assert (contra : DForce = DStep). { apply Hds. left. reflexivity. }
inversion contra.
- (* ARead *)
destruct b eqn:Eqb; [discriminate |]; simpl.
eapply Spec_ARead; eauto.
- discriminate.
Qed.
Definition seq_ideal_eval (P:pub_vars) (c:com) (s:state) (a:astate)
(s':state) (a':astate) (os:obs) : Prop :=
∃ ds, (∀ d, In d ds → d = DStep) ∧
P ⊢ <(s, a, false, ds)> =[ c ]=> <(s', a', false, os)>.
Lemma seq_spec_eval_ideal_eval : ∀ P c s a s' a' os,
seq_spec_eval c s a s' a' os ↔
seq_ideal_eval P c s a s' a' os.
Proof.
intros P c s a s' a' os. unfold seq_spec_eval, seq_ideal_eval.
split; intros [ds [Hds H] ]; ∃ ds; (split; [ apply Hds |]).
- apply seq_eval_ideal_eval_ind1; eauto.
- eapply seq_eval_ideal_eval_ind2; eauto.
Qed.
Let's now prove that the idealized semantics does enforce speculative constant-time
Definition prefix {X:Type} (xs ys : list X) : Prop :=
∃ zs, xs ++ zs = ys.
Lemma prefix_refl : ∀ {X:Type} {ds : list X},
prefix ds ds.
Proof. intros X ds. ∃ []. apply app_nil_r. Qed.
Lemma prefix_nil : ∀ {X:Type} (ds : list X),
prefix [] ds.
Proof. intros X ds. unfold prefix. eexists. simpl. reflexivity. Qed.
Lemma prefix_heads_and_tails : ∀ {X:Type} (h1 h2 : X) (t1 t2 : list X),
prefix (h1::t1) (h2::t2) → h1 = h2 ∧ prefix t1 t2.
Proof.
intros X h1 h2 t1 t2. unfold prefix. intros Hpre.
destruct Hpre as [zs Hpre]; simpl in Hpre.
inversion Hpre; subst. eauto.
Qed.
Lemma prefix_heads : ∀ {X:Type} (h1 h2 : X) (t1 t2 : list X),
prefix (h1::t1) (h2::t2) → h1 = h2.
Proof.
intros X h1 h2 t1 t2 H. apply prefix_heads_and_tails in H; tauto.
Qed.
Lemma prefix_or_heads : ∀ {X:Type} (x y : X) (xs ys : list X),
prefix (x :: xs) (y :: ys) ∨ prefix (y :: ys) (x :: xs) →
x = y.
Proof.
intros X x y xs ys H.
destruct H as [H | H]; apply prefix_heads in H; congruence.
Qed.
Lemma prefix_cons : ∀ {X:Type} (d :X) (ds1 ds2: list X),
prefix ds1 ds2 ↔
prefix (d::ds1) (d::ds2).
Proof.
intros X d ds1 ds2. split; [unfold prefix| ]; intros H.
- destruct H; subst.
eexists; simpl; eauto.
- apply prefix_heads_and_tails in H. destruct H as [_ H]. assumption.
Qed.
Lemma prefix_app : ∀ {X:Type} {ds1 ds2 ds0 ds3 : list X},
prefix (ds1 ++ ds2) (ds0 ++ ds3) →
prefix ds1 ds0 ∨ prefix ds0 ds1.
Proof.
intros X ds1. induction ds1 as [| d1 ds1' IH]; intros ds2 ds0 ds3 H.
- left. apply prefix_nil.
- destruct ds0 as [| d0 ds0'] eqn:D0.
+ right. apply prefix_nil.
+ simpl in H; apply prefix_heads_and_tails in H.
destruct H as [Heq Hpre]; subst.
apply IH in Hpre; destruct Hpre; [left | right];
apply prefix_cons; assumption.
Qed.
Lemma prefix_append_front : ∀ {X:Type} {ds1 ds2 ds3 : list X},
prefix (ds1 ++ ds2) (ds1 ++ ds3) →
prefix ds2 ds3.
Proof.
intros X ds1. induction ds1 as [| d1 ds1' IH]; intros ds2 ds3 H.
- auto.
- simpl in H; apply prefix_cons in H. apply IH in H. assumption.
Qed.
Lemma app_eq_prefix : ∀ {X:Type} {ds1 ds2 ds1' ds2' : list X},
ds1 ++ ds2 = ds1' ++ ds2' →
prefix ds1 ds1' ∨ prefix ds1' ds1.
Proof.
intros X ds1. induction ds1 as [| h1 t1 IH]; intros ds2 ds1' ds2' H.
- left. apply prefix_nil.
- destruct ds1' as [| h1' t1'] eqn:D1'.
+ right. apply prefix_nil.
+ simpl in H; inversion H; subst.
apply IH in H2. destruct H2 as [HL | HR];
[left | right]; apply prefix_cons; auto.
Qed.
Ltac split4 := split; [|split; [| split] ].
Lemma pub_equiv_update_public : ∀ P {A:Type}
(t1 t2 : total_map A) (X :string) (a1 a2 :A),
pub_equiv P t1 t2 →
P X = public →
a1 = a2 →
pub_equiv P (X!-> a1; t1) (X!-> a2; t2).
Proof.
intros P A t1 t2 X a1 a2 Hequiv Hpub Ha1a2 x Hx.
destruct (String.eqb_spec X x) as [Heq | Hneq].
- subst. do 2 rewrite t_update_eq. reflexivity.
- do 2 (rewrite t_update_neq;[| auto]). eapply Hequiv; eauto.
Qed.
Lemma pub_equiv_update_secret : ∀ P {A:Type}
(t1 t2 : total_map A) (X :string) (a1 a2 :A),
pub_equiv P t1 t2 →
P X = secret →
pub_equiv P (X!-> a1; t1) (X!-> a2; t2).
Proof.
intros P A t1 t2 X a1 a2 Hequiv Hsec x Hx.
destruct (String.eqb_spec X x) as [Heq | Hneq].
- subst. rewrite Hsec in Hx. discriminate.
- do 2 (rewrite t_update_neq;[| auto]). eapply Hequiv; eauto.
Qed.
Lemma ct_well_typed_ideal_noninterferent_general :
∀ P PA c st1 st2 ast1 ast2 b st1' st2' ast1' ast2' b1' b2' os1 os2 ds1 ds2,
P ;; PA ⊢ct- c →
pub_equiv P st1 st2 →
(b = false → pub_equiv PA ast1 ast2) →
(prefix ds1 ds2 ∨ prefix ds2 ds1) → (* <- interesting generalization *)
P ⊢ <(st1, ast1, b, ds1)> =[ c ]=> <(st1', ast1', b1', os1)> →
P ⊢ <(st2, ast2, b, ds2)> =[ c ]=> <(st2', ast2', b2', os2)> →
pub_equiv P st1' st2' ∧ b1' = b2' ∧
(b1' = false → pub_equiv PA ast1' ast2') ∧
ds1 = ds2. (* <- interesting generalization *)
Proof.
intros P PA c st1 st2 ast1 ast2 b st1' st2' ast1' ast2' b1' b2' os1 os2 ds1 ds2
Hwt Heq Haeq Hds Heval1 Heval2.
generalize dependent st2'. generalize dependent st2.
generalize dependent ast2'. generalize dependent ast2.
generalize dependent os2. generalize dependent b2'.
generalize dependent ds2.
induction Heval1; intros ds2X Hds b2' os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- (* Skip *) auto.
- (* Asgn *) split4; auto.
destruct (P x) eqn:EqPx.
+ eapply pub_equiv_update_public; eauto.
eapply noninterferent_aexp; eauto.
destruct l; [auto | simpl in H14; discriminate].
+ eapply pub_equiv_update_secret; eauto.
- (* Seq *)
destruct Hds as [Hpre | Hpre]; apply prefix_app in Hpre as Hds1.
+ (* prefix (ds1 ++ ds2) (ds0 ++ ds3) *)
eapply IHHeval1_1 in Hds1; eauto.
destruct Hds1 as [ Hstates [Hbits [Hastates Hdirections] ] ]. subst.
eapply prefix_append_front in Hpre as Hds2.
eapply IHHeval1_2 in H14; eauto. firstorder. subst. reflexivity.
+ (* prefix (ds0 ++ ds3) (ds1 ++ ds2) *)
eapply IHHeval1_1 with (ds2:=ds0) in H13; eauto; [| tauto].
destruct H13 as [ Hstates [Hbits [Hastates Hdirections] ] ]. subst.
eapply prefix_append_front in Hpre as Hds2.
eapply IHHeval1_2 in H14; eauto. firstorder; subst; reflexivity.
- (* If *)
assert(G : P ;; PA ⊢ct- (if beval st be then c1 else c2)).
{ destruct (beval st be); assumption. }
assert(Gds : prefix ds ds0 ∨ prefix ds0 ds).
{ destruct Hds as [Hds | Hds]; apply prefix_cons in Hds; tauto. }
erewrite noninterferent_bexp in H10.
+ specialize (IHHeval1 G _ Gds _ _ _ Haeq _ _ Heq _ H10).
firstorder; congruence.
+ apply pub_equiv_sym. eassumption.
+ eassumption.
- (* IF; contra *)
apply prefix_or_heads in Hds; inversion Hds.
- (* IF; contra *)
apply prefix_or_heads in Hds; inversion Hds.
- (* If_F; analog to If *)
assert(G : P ;; PA ⊢ct- (if beval st be then c2 else c1)).
{ destruct (beval st be); assumption. }
assert(Gds : prefix ds ds0 ∨ prefix ds0 ds).
{ destruct Hds as [Hds | Hds]; apply prefix_cons in Hds; tauto. }
erewrite noninterferent_bexp in H10.
+ assert(GG: true = false → pub_equiv PA ast a2). (* <- only difference *)
{ intro Hc. discriminate. }
specialize (IHHeval1 G _ Gds _ _ _ GG _ _ Heq _ H10).
firstorder; congruence.
+ apply pub_equiv_sym. eassumption.
+ eassumption.
- (* While *) eapply IHHeval1; try eassumption. repeat constructor; eassumption.
- (* ARead *) split4; eauto.
destruct (P x) eqn:EqPx; simpl.
+ eapply pub_equiv_update_public; eauto.
destruct b2' eqn:Eqb2'; simpl; [reflexivity |].
unfold can_flow in H18. eapply orb_true_iff in H18.
destruct H18 as [Hapub | Contra]; [| simpl in Contra; discriminate].
eapply Haeq in Hapub; [| reflexivity]. rewrite Hapub.
eapply noninterferent_aexp in Heq; eauto. rewrite Heq.
reflexivity.
+ eapply pub_equiv_update_secret; eauto.
- (* ARead_U *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× simpl. eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds.
- (* ARead *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds.
- (* Aread_U *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds. reflexivity.
- (* Write *) split4; eauto. intro Hb2'.
destruct (PA a) eqn:EqPAa.
+ eapply pub_equiv_update_public; eauto.
destruct l eqn:Eql.
× eapply noninterferent_aexp in H19, H20; eauto. rewrite H19, H20.
apply Haeq in Hb2'. apply Hb2' in EqPAa. rewrite EqPAa. reflexivity.
× simpl in H21. discriminate.
+ eapply pub_equiv_update_secret; eauto.
- (* Write_U; contra *) apply prefix_or_heads in Hds. inversion Hds.
- (* Write; contra *) apply prefix_or_heads in Hds. inversion Hds.
- (* Write_U; contra *) split4; eauto.
+ intro contra. discriminate contra.
+ apply prefix_or_heads in Hds. inversion Hds. reflexivity.
Qed.
Lemma ct_well_typed_ideal_noninterferent :
∀ P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds)> =[ c ]=> <(s1', a1', b1', os1)> →
P ⊢ <(s2, a2, b, ds)> =[ c ]=> <(s2', a2', b2', os2)> →
pub_equiv P s1' s2' ∧ b1' = b2' ∧ (b1' = false → pub_equiv PA a1' a2').
Proof.
intros P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds
Hwt Heq Haeq Heval1 Heval2.
eapply ct_well_typed_ideal_noninterferent_general in Heval2; eauto; try tauto.
left. apply prefix_refl.
Qed.
∃ zs, xs ++ zs = ys.
Lemma prefix_refl : ∀ {X:Type} {ds : list X},
prefix ds ds.
Proof. intros X ds. ∃ []. apply app_nil_r. Qed.
Lemma prefix_nil : ∀ {X:Type} (ds : list X),
prefix [] ds.
Proof. intros X ds. unfold prefix. eexists. simpl. reflexivity. Qed.
Lemma prefix_heads_and_tails : ∀ {X:Type} (h1 h2 : X) (t1 t2 : list X),
prefix (h1::t1) (h2::t2) → h1 = h2 ∧ prefix t1 t2.
Proof.
intros X h1 h2 t1 t2. unfold prefix. intros Hpre.
destruct Hpre as [zs Hpre]; simpl in Hpre.
inversion Hpre; subst. eauto.
Qed.
Lemma prefix_heads : ∀ {X:Type} (h1 h2 : X) (t1 t2 : list X),
prefix (h1::t1) (h2::t2) → h1 = h2.
Proof.
intros X h1 h2 t1 t2 H. apply prefix_heads_and_tails in H; tauto.
Qed.
Lemma prefix_or_heads : ∀ {X:Type} (x y : X) (xs ys : list X),
prefix (x :: xs) (y :: ys) ∨ prefix (y :: ys) (x :: xs) →
x = y.
Proof.
intros X x y xs ys H.
destruct H as [H | H]; apply prefix_heads in H; congruence.
Qed.
Lemma prefix_cons : ∀ {X:Type} (d :X) (ds1 ds2: list X),
prefix ds1 ds2 ↔
prefix (d::ds1) (d::ds2).
Proof.
intros X d ds1 ds2. split; [unfold prefix| ]; intros H.
- destruct H; subst.
eexists; simpl; eauto.
- apply prefix_heads_and_tails in H. destruct H as [_ H]. assumption.
Qed.
Lemma prefix_app : ∀ {X:Type} {ds1 ds2 ds0 ds3 : list X},
prefix (ds1 ++ ds2) (ds0 ++ ds3) →
prefix ds1 ds0 ∨ prefix ds0 ds1.
Proof.
intros X ds1. induction ds1 as [| d1 ds1' IH]; intros ds2 ds0 ds3 H.
- left. apply prefix_nil.
- destruct ds0 as [| d0 ds0'] eqn:D0.
+ right. apply prefix_nil.
+ simpl in H; apply prefix_heads_and_tails in H.
destruct H as [Heq Hpre]; subst.
apply IH in Hpre; destruct Hpre; [left | right];
apply prefix_cons; assumption.
Qed.
Lemma prefix_append_front : ∀ {X:Type} {ds1 ds2 ds3 : list X},
prefix (ds1 ++ ds2) (ds1 ++ ds3) →
prefix ds2 ds3.
Proof.
intros X ds1. induction ds1 as [| d1 ds1' IH]; intros ds2 ds3 H.
- auto.
- simpl in H; apply prefix_cons in H. apply IH in H. assumption.
Qed.
Lemma app_eq_prefix : ∀ {X:Type} {ds1 ds2 ds1' ds2' : list X},
ds1 ++ ds2 = ds1' ++ ds2' →
prefix ds1 ds1' ∨ prefix ds1' ds1.
Proof.
intros X ds1. induction ds1 as [| h1 t1 IH]; intros ds2 ds1' ds2' H.
- left. apply prefix_nil.
- destruct ds1' as [| h1' t1'] eqn:D1'.
+ right. apply prefix_nil.
+ simpl in H; inversion H; subst.
apply IH in H2. destruct H2 as [HL | HR];
[left | right]; apply prefix_cons; auto.
Qed.
Ltac split4 := split; [|split; [| split] ].
Lemma pub_equiv_update_public : ∀ P {A:Type}
(t1 t2 : total_map A) (X :string) (a1 a2 :A),
pub_equiv P t1 t2 →
P X = public →
a1 = a2 →
pub_equiv P (X!-> a1; t1) (X!-> a2; t2).
Proof.
intros P A t1 t2 X a1 a2 Hequiv Hpub Ha1a2 x Hx.
destruct (String.eqb_spec X x) as [Heq | Hneq].
- subst. do 2 rewrite t_update_eq. reflexivity.
- do 2 (rewrite t_update_neq;[| auto]). eapply Hequiv; eauto.
Qed.
Lemma pub_equiv_update_secret : ∀ P {A:Type}
(t1 t2 : total_map A) (X :string) (a1 a2 :A),
pub_equiv P t1 t2 →
P X = secret →
pub_equiv P (X!-> a1; t1) (X!-> a2; t2).
Proof.
intros P A t1 t2 X a1 a2 Hequiv Hsec x Hx.
destruct (String.eqb_spec X x) as [Heq | Hneq].
- subst. rewrite Hsec in Hx. discriminate.
- do 2 (rewrite t_update_neq;[| auto]). eapply Hequiv; eauto.
Qed.
Lemma ct_well_typed_ideal_noninterferent_general :
∀ P PA c st1 st2 ast1 ast2 b st1' st2' ast1' ast2' b1' b2' os1 os2 ds1 ds2,
P ;; PA ⊢ct- c →
pub_equiv P st1 st2 →
(b = false → pub_equiv PA ast1 ast2) →
(prefix ds1 ds2 ∨ prefix ds2 ds1) → (* <- interesting generalization *)
P ⊢ <(st1, ast1, b, ds1)> =[ c ]=> <(st1', ast1', b1', os1)> →
P ⊢ <(st2, ast2, b, ds2)> =[ c ]=> <(st2', ast2', b2', os2)> →
pub_equiv P st1' st2' ∧ b1' = b2' ∧
(b1' = false → pub_equiv PA ast1' ast2') ∧
ds1 = ds2. (* <- interesting generalization *)
Proof.
intros P PA c st1 st2 ast1 ast2 b st1' st2' ast1' ast2' b1' b2' os1 os2 ds1 ds2
Hwt Heq Haeq Hds Heval1 Heval2.
generalize dependent st2'. generalize dependent st2.
generalize dependent ast2'. generalize dependent ast2.
generalize dependent os2. generalize dependent b2'.
generalize dependent ds2.
induction Heval1; intros ds2X Hds b2' os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- (* Skip *) auto.
- (* Asgn *) split4; auto.
destruct (P x) eqn:EqPx.
+ eapply pub_equiv_update_public; eauto.
eapply noninterferent_aexp; eauto.
destruct l; [auto | simpl in H14; discriminate].
+ eapply pub_equiv_update_secret; eauto.
- (* Seq *)
destruct Hds as [Hpre | Hpre]; apply prefix_app in Hpre as Hds1.
+ (* prefix (ds1 ++ ds2) (ds0 ++ ds3) *)
eapply IHHeval1_1 in Hds1; eauto.
destruct Hds1 as [ Hstates [Hbits [Hastates Hdirections] ] ]. subst.
eapply prefix_append_front in Hpre as Hds2.
eapply IHHeval1_2 in H14; eauto. firstorder. subst. reflexivity.
+ (* prefix (ds0 ++ ds3) (ds1 ++ ds2) *)
eapply IHHeval1_1 with (ds2:=ds0) in H13; eauto; [| tauto].
destruct H13 as [ Hstates [Hbits [Hastates Hdirections] ] ]. subst.
eapply prefix_append_front in Hpre as Hds2.
eapply IHHeval1_2 in H14; eauto. firstorder; subst; reflexivity.
- (* If *)
assert(G : P ;; PA ⊢ct- (if beval st be then c1 else c2)).
{ destruct (beval st be); assumption. }
assert(Gds : prefix ds ds0 ∨ prefix ds0 ds).
{ destruct Hds as [Hds | Hds]; apply prefix_cons in Hds; tauto. }
erewrite noninterferent_bexp in H10.
+ specialize (IHHeval1 G _ Gds _ _ _ Haeq _ _ Heq _ H10).
firstorder; congruence.
+ apply pub_equiv_sym. eassumption.
+ eassumption.
- (* IF; contra *)
apply prefix_or_heads in Hds; inversion Hds.
- (* IF; contra *)
apply prefix_or_heads in Hds; inversion Hds.
- (* If_F; analog to If *)
assert(G : P ;; PA ⊢ct- (if beval st be then c2 else c1)).
{ destruct (beval st be); assumption. }
assert(Gds : prefix ds ds0 ∨ prefix ds0 ds).
{ destruct Hds as [Hds | Hds]; apply prefix_cons in Hds; tauto. }
erewrite noninterferent_bexp in H10.
+ assert(GG: true = false → pub_equiv PA ast a2). (* <- only difference *)
{ intro Hc. discriminate. }
specialize (IHHeval1 G _ Gds _ _ _ GG _ _ Heq _ H10).
firstorder; congruence.
+ apply pub_equiv_sym. eassumption.
+ eassumption.
- (* While *) eapply IHHeval1; try eassumption. repeat constructor; eassumption.
- (* ARead *) split4; eauto.
destruct (P x) eqn:EqPx; simpl.
+ eapply pub_equiv_update_public; eauto.
destruct b2' eqn:Eqb2'; simpl; [reflexivity |].
unfold can_flow in H18. eapply orb_true_iff in H18.
destruct H18 as [Hapub | Contra]; [| simpl in Contra; discriminate].
eapply Haeq in Hapub; [| reflexivity]. rewrite Hapub.
eapply noninterferent_aexp in Heq; eauto. rewrite Heq.
reflexivity.
+ eapply pub_equiv_update_secret; eauto.
- (* ARead_U *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× simpl. eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds.
- (* ARead *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds.
- (* Aread_U *) split4; eauto.
+ destruct (P x) eqn:EqPx.
× eapply pub_equiv_update_public; eauto.
× eapply pub_equiv_update_secret; eauto.
+ apply prefix_or_heads in Hds. inversion Hds. reflexivity.
- (* Write *) split4; eauto. intro Hb2'.
destruct (PA a) eqn:EqPAa.
+ eapply pub_equiv_update_public; eauto.
destruct l eqn:Eql.
× eapply noninterferent_aexp in H19, H20; eauto. rewrite H19, H20.
apply Haeq in Hb2'. apply Hb2' in EqPAa. rewrite EqPAa. reflexivity.
× simpl in H21. discriminate.
+ eapply pub_equiv_update_secret; eauto.
- (* Write_U; contra *) apply prefix_or_heads in Hds. inversion Hds.
- (* Write; contra *) apply prefix_or_heads in Hds. inversion Hds.
- (* Write_U; contra *) split4; eauto.
+ intro contra. discriminate contra.
+ apply prefix_or_heads in Hds. inversion Hds. reflexivity.
Qed.
Lemma ct_well_typed_ideal_noninterferent :
∀ P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds)> =[ c ]=> <(s1', a1', b1', os1)> →
P ⊢ <(s2, a2, b, ds)> =[ c ]=> <(s2', a2', b2', os2)> →
pub_equiv P s1' s2' ∧ b1' = b2' ∧ (b1' = false → pub_equiv PA a1' a2').
Proof.
intros P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds
Hwt Heq Haeq Heval1 Heval2.
eapply ct_well_typed_ideal_noninterferent_general in Heval2; eauto; try tauto.
left. apply prefix_refl.
Qed.
This corollary (used below) also follows from noninterferent_general
Corollary aux : ∀ P PA s1 s2 a1 a2 b ds1 ds2 c st1 st2 ast1 ast2 b1 b2 os1 os2 ds1' ds2',
ds2 ++ ds2' = ds1 ++ ds1' →
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds1)> =[ c ]=> <(st1, ast1, b1, os1)> →
P ⊢ <(s2, a2, b, ds2)> =[ c ]=> <(st2, ast2, b2, os2)> →
ds1 = ds2 ∧ ds1' = ds2'.
Proof.
intros P PA s1 s2 a1 a2 b ds1 ds2 c st1 st2 ast1 ast2 b1 b2 os1 os2 ds1' ds2'
Hds Hwt Heq Haeq Heval1 Heval2.
pose proof Hds as H.
symmetry in H.
apply app_eq_prefix in H.
eapply ct_well_typed_ideal_noninterferent_general in H;
[ | | | | apply Heval1 | apply Heval2]; try eassumption.
- destruct H as [ _ [ _ [ _ H] ] ]. subst. split; [reflexivity|].
apply app_inv_head in Hds. congruence.
Qed.
Theorem ideal_spec_ct_secure :
∀ P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds)> =[ c ]=> <(s1', a1', b1', os1)> →
P ⊢ <(s2, a2, b, ds)> =[ c ]=> <(s2', a2', b2', os2)> →
os1 = os2.
Proof.
intros P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds
Hwt Heq Haeq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent a2'. generalize dependent a2.
generalize dependent os2. generalize dependent b2'.
induction Heval1; intros b2' os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- (* Skip *) reflexivity.
- (* Skip *) reflexivity.
- (* Seq *) eapply aux in H1; [| | | | apply Heval1_1 | apply H5 ]; eauto.
destruct H1 as [H1 H1']. subst.
assert(NI1 : pub_equiv P st' st'0 ∧ b' = b'0 ∧ (b' = false → pub_equiv PA ast' ast'0)).
{ eapply ct_well_typed_ideal_noninterferent; [ | | | eassumption | eassumption]; eauto. }
destruct NI1 as [NI1eq [NIb NIaeq] ]. subst.
erewrite IHHeval1_2; [erewrite IHHeval1_1 | | | |];
try reflexivity; try eassumption.
- (* If *) f_equal.
+ eapply IHHeval1; try eassumption; try (destruct (beval st be); eassumption).
erewrite noninterferent_bexp; eassumption.
+ f_equal. eapply noninterferent_bexp in Heq; [| eassumption].
rewrite Heq. reflexivity.
- (*If_F *) f_equal.
+ eapply IHHeval1; try eassumption; try (destruct (beval st be); eassumption).
× intro contra. discriminate contra.
× erewrite noninterferent_bexp; eassumption.
+ f_equal. eapply noninterferent_bexp in Heq; [| eassumption].
rewrite Heq. reflexivity.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* ARead *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* ARead_U *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* AWrite *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* AWrite *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
Qed.
ds2 ++ ds2' = ds1 ++ ds1' →
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds1)> =[ c ]=> <(st1, ast1, b1, os1)> →
P ⊢ <(s2, a2, b, ds2)> =[ c ]=> <(st2, ast2, b2, os2)> →
ds1 = ds2 ∧ ds1' = ds2'.
Proof.
intros P PA s1 s2 a1 a2 b ds1 ds2 c st1 st2 ast1 ast2 b1 b2 os1 os2 ds1' ds2'
Hds Hwt Heq Haeq Heval1 Heval2.
pose proof Hds as H.
symmetry in H.
apply app_eq_prefix in H.
eapply ct_well_typed_ideal_noninterferent_general in H;
[ | | | | apply Heval1 | apply Heval2]; try eassumption.
- destruct H as [ _ [ _ [ _ H] ] ]. subst. split; [reflexivity|].
apply app_inv_head in Hds. congruence.
Qed.
Theorem ideal_spec_ct_secure :
∀ P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
pub_equiv P s1 s2 →
(b = false → pub_equiv PA a1 a2) →
P ⊢ <(s1, a1, b, ds)> =[ c ]=> <(s1', a1', b1', os1)> →
P ⊢ <(s2, a2, b, ds)> =[ c ]=> <(s2', a2', b2', os2)> →
os1 = os2.
Proof.
intros P PA c s1 s2 a1 a2 b s1' s2' a1' a2' b1' b2' os1 os2 ds
Hwt Heq Haeq Heval1 Heval2.
generalize dependent s2'. generalize dependent s2.
generalize dependent a2'. generalize dependent a2.
generalize dependent os2. generalize dependent b2'.
induction Heval1; intros b2' os2' a2 Haeq a2' s2 Heq s2' Heval2;
inversion Heval2; inversion Hwt; subst.
- (* Skip *) reflexivity.
- (* Skip *) reflexivity.
- (* Seq *) eapply aux in H1; [| | | | apply Heval1_1 | apply H5 ]; eauto.
destruct H1 as [H1 H1']. subst.
assert(NI1 : pub_equiv P st' st'0 ∧ b' = b'0 ∧ (b' = false → pub_equiv PA ast' ast'0)).
{ eapply ct_well_typed_ideal_noninterferent; [ | | | eassumption | eassumption]; eauto. }
destruct NI1 as [NI1eq [NIb NIaeq] ]. subst.
erewrite IHHeval1_2; [erewrite IHHeval1_1 | | | |];
try reflexivity; try eassumption.
- (* If *) f_equal.
+ eapply IHHeval1; try eassumption; try (destruct (beval st be); eassumption).
erewrite noninterferent_bexp; eassumption.
+ f_equal. eapply noninterferent_bexp in Heq; [| eassumption].
rewrite Heq. reflexivity.
- (*If_F *) f_equal.
+ eapply IHHeval1; try eassumption; try (destruct (beval st be); eassumption).
× intro contra. discriminate contra.
× erewrite noninterferent_bexp; eassumption.
+ f_equal. eapply noninterferent_bexp in Heq; [| eassumption].
rewrite Heq. reflexivity.
- eapply IHHeval1; eauto. repeat constructor; eassumption.
- (* ARead *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* ARead_U *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* AWrite *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
- (* AWrite *) f_equal. f_equal. eapply noninterferent_aexp; eassumption.
Qed.
We now prove that the idealized semantics is equivalent to sel_slh
transformation (Lemma 6 and the more precise Lemma 7).
All results about sel_slh below assume that the original c doesn't
already use the variable "b" needed by the sel_slh translation.
Fixpoint a_unused (x:string) (a:aexp) : Prop :=
match a with
| ANum n ⇒ True
| AId y ⇒ y ≠ x
| <{a1 + a2}>
| <{a1 - a2}>
| <{a1 × a2}> ⇒ a_unused x a1 ∧ a_unused x a2
| <{b ? a1 : a2}> ⇒ b_unused x b ∧ a_unused x a1 ∧ a_unused x a2
end
with b_unused (x:string) (b:bexp) : Prop :=
match b with
| <{true}>
| <{false}> ⇒ True
| <{a1 = a2}>
| <{a1 ≠ a2}>
| <{a1 ≤ a2}>
| <{a1 > a2}> ⇒ a_unused x a1 ∧ a_unused x a2
| <{¬ b1}> ⇒ b_unused x b1
| <{b1 && b2}> ⇒ b_unused x b1 ∧ b_unused x b2
end.
Fixpoint unused (x:string) (c:com) : Prop :=
match c with
| <{{skip}}> ⇒ True
| <{{y := e}}> ⇒ y ≠ x ∧ a_unused x e
| <{{c1; c2}}> ⇒ unused x c1 ∧ unused x c2
| <{{if be then c1 else c2 end}}> ⇒
b_unused x be ∧ unused x c1 ∧ unused x c2
| <{{while be do c end}}> ⇒ b_unused x be ∧ unused x c
| <{{y <- a[[i]]}}> ⇒ y ≠ x ∧ a_unused x i
| <{{a[i] <- e}}> ⇒ a_unused x i ∧ a_unused x e
end.
Open Scope string_scope.
match a with
| ANum n ⇒ True
| AId y ⇒ y ≠ x
| <{a1 + a2}>
| <{a1 - a2}>
| <{a1 × a2}> ⇒ a_unused x a1 ∧ a_unused x a2
| <{b ? a1 : a2}> ⇒ b_unused x b ∧ a_unused x a1 ∧ a_unused x a2
end
with b_unused (x:string) (b:bexp) : Prop :=
match b with
| <{true}>
| <{false}> ⇒ True
| <{a1 = a2}>
| <{a1 ≠ a2}>
| <{a1 ≤ a2}>
| <{a1 > a2}> ⇒ a_unused x a1 ∧ a_unused x a2
| <{¬ b1}> ⇒ b_unused x b1
| <{b1 && b2}> ⇒ b_unused x b1 ∧ b_unused x b2
end.
Fixpoint unused (x:string) (c:com) : Prop :=
match c with
| <{{skip}}> ⇒ True
| <{{y := e}}> ⇒ y ≠ x ∧ a_unused x e
| <{{c1; c2}}> ⇒ unused x c1 ∧ unused x c2
| <{{if be then c1 else c2 end}}> ⇒
b_unused x be ∧ unused x c1 ∧ unused x c2
| <{{while be do c end}}> ⇒ b_unused x be ∧ unused x c
| <{{y <- a[[i]]}}> ⇒ y ≠ x ∧ a_unused x i
| <{{a[i] <- e}}> ⇒ a_unused x i ∧ a_unused x e
end.
Open Scope string_scope.
As a warm-up we prove that sel_slh properly updates the variable "b".
Proving this by induction on com or spec_eval leads to induction
hypotheses, that are not strong enough to prove the While or Spec_While
case. Therefore we will prove it by induction on the program size
(prog_size) of a tupel (c :com) and (ds :dirs).
Fixpoint com_size (c :com) :nat :=
match c with
| <{{ c1; c2 }}> ⇒ 1 + (com_size c1) + (com_size c2)
| <{{ if be then ct else cf end }}> ⇒ 1 + max (com_size ct) (com_size cf)
| <{{ while be do cw end }}> ⇒ 3 + (com_size cw)
| _ ⇒ 1
end.
Definition prog_size (c :com) (ds :dirs) :nat := com_size c + length ds.
match c with
| <{{ c1; c2 }}> ⇒ 1 + (com_size c1) + (com_size c2)
| <{{ if be then ct else cf end }}> ⇒ 1 + max (com_size ct) (com_size cf)
| <{{ while be do cw end }}> ⇒ 3 + (com_size cw)
| _ ⇒ 1
end.
Definition prog_size (c :com) (ds :dirs) :nat := com_size c + length ds.
The induction principle on prog_size
Axiom prog_size_ind :
∀ P : com → dirs → Prop,
(∀ c ds,
( ∀ c' ds',
prog_size c' ds' < prog_size c ds →
P c' ds') → P c ds ) →
(∀ c ds, P c ds).
∀ P : com → dirs → Prop,
(∀ c ds,
( ∀ c' ds',
prog_size c' ds' < prog_size c ds →
P c' ds') → P c ds ) →
(∀ c ds, P c ds).
The proof of sel_slh_flag
Lemma prog_size_monotonic: ∀ c1 ds1 c2 ds2,
(com_size c1 < com_size c2 ∧ length ds1 ≤ length ds2 ) ∨
(com_size c1 ≤ com_size c2 ∧ length ds1 < length ds2) →
prog_size c1 ds1 < prog_size c2 ds2.
Proof.
intros c1 ds1 c2 ds2 [ [Hcom Hdir] | [Hcom Hdir] ];
unfold prog_size; lia.
Qed.
(com_size c1 < com_size c2 ∧ length ds1 ≤ length ds2 ) ∨
(com_size c1 ≤ com_size c2 ∧ length ds1 < length ds2) →
prog_size c1 ds1 < prog_size c2 ds2.
Proof.
intros c1 ds1 c2 ds2 [ [Hcom Hdir] | [Hcom Hdir] ];
unfold prog_size; lia.
Qed.
Based on the Lemma prog_size_monotonic we can build a tactic to solve
the subgoals in the form of prog_size c' ds' < prog_size c ds,
which will be produced by prog_size_ind.
Ltac prog_size_auto :=
try ( apply prog_size_monotonic; left; split; simpl;
[| repeat rewrite app_length]; lia );
try ( apply prog_size_monotonic; right; split; simpl;
[| repeat rewrite app_length]; lia);
try ( apply prog_size_monotonic; left; split; simpl;
[auto | repeat rewrite app_length; lia] ).
try ( apply prog_size_monotonic; left; split; simpl;
[| repeat rewrite app_length]; lia );
try ( apply prog_size_monotonic; right; split; simpl;
[| repeat rewrite app_length]; lia);
try ( apply prog_size_monotonic; left; split; simpl;
[auto | repeat rewrite app_length; lia] ).
To properly apply prog_size_ind, we need to state sel_slh_flag
as a proposition of type com → dirs → Prop. Therefore we define the
following:
Definition sel_slh_flag_prop (c :com) (ds :dirs) :Prop :=
∀ P st ast (b:bool) st' ast' (b':bool) os,
unused "b" c →
st "b" = (if b then 1 else 0) →
<(st, ast, b, ds)> =[ sel_slh P c ]=> <(st', ast', b', os)> →
st' "b" = (if b' then 1 else 0).
Lemma sel_slh_flag : ∀ c ds,
sel_slh_flag_prop c ds.
Proof.
eapply prog_size_ind. unfold sel_slh_flag_prop.
intros c ds IH P st ast b st' ast' b' os Hunused Hstb Heval.
destruct c; simpl in *; try (now inversion Heval; subst; eauto).
- (* Asgn *)
inversion Heval; subst. rewrite t_update_neq; tauto.
- (* Seq *)
inversion Heval; subst; clear Heval.
apply IH in H1; try tauto.
+ apply IH in H10; try tauto. prog_size_auto.
+ prog_size_auto.
- (* IF *)
inversion Heval; subst; clear Heval.
+ (* Spec_If *)
destruct (beval st be) eqn:Eqnbe.
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. assumption. }
× (* analog to true case *)
inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. assumption. }
+ (* Spec_If_F; analog to Spec_If case *)
destruct (beval st be) eqn:Eqnbe.
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. reflexivity. }
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. reflexivity. }
- (* While *)
inversion Heval; subst; clear Heval.
inversion H1; subst; clear H1.
inversion H11; subst; clear H11.
+ (* non-speculative *)
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
assert(Hwhile: <(st'1, ast'1, b'1, (ds0 ++ ds2)%list)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', (os2++os3)%list)> ).
{ simpl. eapply Spec_Seq; eassumption. }
apply IH in Hwhile; eauto.
{ prog_size_auto. }
{ clear Hwhile; clear H11.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2. simpl in H12.
apply IH in H12; try tauto.
- prog_size_auto.
- rewrite t_update_eq, Eqnbe; simpl. assumption. }
× inversion H12; subst; clear H12.
inversion H10; subst; simpl.
rewrite t_update_eq, Eqnbe; simpl. assumption.
+ (* speculative; analog to non_speculative case *)
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H10; subst; simpl.
rewrite t_update_eq, Eqnbe; simpl. reflexivity.
× inversion H12; subst; clear H12.
assert(Hwhile: <(st'1, ast'1, b'1, (ds0 ++ ds2)%list)>
=[sel_slh P <{{while be do c end}}>]=> <(st', ast', b', (os2++os3)%list )>).
{ simpl. eapply Spec_Seq; eassumption. }
apply IH in Hwhile; eauto.
{ prog_size_auto. }
{ clear Hwhile; clear H11.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2. simpl in H12.
apply IH in H12; try tauto.
- prog_size_auto.
- rewrite t_update_eq, Eqnbe; simpl. reflexivity. }
- (* ARead *)
destruct (P x) eqn:Eqnbe.
+ inversion Heval; subst; clear Heval.
inversion H10; subst; clear H10.
rewrite t_update_neq; [| tauto].
inversion H1; subst;
try (rewrite t_update_neq; [assumption| tauto]).
+ inversion Heval; subst;
try (rewrite t_update_neq; [assumption| tauto]).
Qed.
∀ P st ast (b:bool) st' ast' (b':bool) os,
unused "b" c →
st "b" = (if b then 1 else 0) →
<(st, ast, b, ds)> =[ sel_slh P c ]=> <(st', ast', b', os)> →
st' "b" = (if b' then 1 else 0).
Lemma sel_slh_flag : ∀ c ds,
sel_slh_flag_prop c ds.
Proof.
eapply prog_size_ind. unfold sel_slh_flag_prop.
intros c ds IH P st ast b st' ast' b' os Hunused Hstb Heval.
destruct c; simpl in *; try (now inversion Heval; subst; eauto).
- (* Asgn *)
inversion Heval; subst. rewrite t_update_neq; tauto.
- (* Seq *)
inversion Heval; subst; clear Heval.
apply IH in H1; try tauto.
+ apply IH in H10; try tauto. prog_size_auto.
+ prog_size_auto.
- (* IF *)
inversion Heval; subst; clear Heval.
+ (* Spec_If *)
destruct (beval st be) eqn:Eqnbe.
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. assumption. }
× (* analog to true case *)
inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. assumption. }
+ (* Spec_If_F; analog to Spec_If case *)
destruct (beval st be) eqn:Eqnbe.
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. reflexivity. }
× inversion H10; subst; clear H10.
inversion H1; subst; clear H1.
apply IH in H11; try tauto.
{ prog_size_auto. }
{ rewrite t_update_eq. simpl. rewrite Eqnbe. reflexivity. }
- (* While *)
inversion Heval; subst; clear Heval.
inversion H1; subst; clear H1.
inversion H11; subst; clear H11.
+ (* non-speculative *)
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
assert(Hwhile: <(st'1, ast'1, b'1, (ds0 ++ ds2)%list)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', (os2++os3)%list)> ).
{ simpl. eapply Spec_Seq; eassumption. }
apply IH in Hwhile; eauto.
{ prog_size_auto. }
{ clear Hwhile; clear H11.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2. simpl in H12.
apply IH in H12; try tauto.
- prog_size_auto.
- rewrite t_update_eq, Eqnbe; simpl. assumption. }
× inversion H12; subst; clear H12.
inversion H10; subst; simpl.
rewrite t_update_eq, Eqnbe; simpl. assumption.
+ (* speculative; analog to non_speculative case *)
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H10; subst; simpl.
rewrite t_update_eq, Eqnbe; simpl. reflexivity.
× inversion H12; subst; clear H12.
assert(Hwhile: <(st'1, ast'1, b'1, (ds0 ++ ds2)%list)>
=[sel_slh P <{{while be do c end}}>]=> <(st', ast', b', (os2++os3)%list )>).
{ simpl. eapply Spec_Seq; eassumption. }
apply IH in Hwhile; eauto.
{ prog_size_auto. }
{ clear Hwhile; clear H11.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2. simpl in H12.
apply IH in H12; try tauto.
- prog_size_auto.
- rewrite t_update_eq, Eqnbe; simpl. reflexivity. }
- (* ARead *)
destruct (P x) eqn:Eqnbe.
+ inversion Heval; subst; clear Heval.
inversion H10; subst; clear H10.
rewrite t_update_neq; [| tauto].
inversion H1; subst;
try (rewrite t_update_neq; [assumption| tauto]).
+ inversion Heval; subst;
try (rewrite t_update_neq; [assumption| tauto]).
Qed.
We now prove that sel_slh implies the ideal semantics.
Lemma aeval_beval_unused_update : ∀ X st n,
(∀ ae, a_unused X ae →
aeval (X !-> n; st) ae = aeval st ae) ∧
(∀ be, b_unused X be →
beval (X !-> n; st) be = beval st be).
Proof.
intros X st n. apply aexp_bexp_mutind; intros;
simpl in *; try reflexivity;
try (
rewrite H; [| tauto]; rewrite H0; [| tauto]; reflexivity
).
- rewrite t_update_neq; eauto.
- rewrite H; [| tauto]. rewrite H0; [| tauto]. rewrite H1; [| tauto].
reflexivity.
- rewrite H; auto.
Qed.
Lemma aeval_unused_update : ∀ X st ae n,
a_unused X ae →
aeval (X !-> n; st) ae = aeval st ae.
Proof. intros X st ae n. apply aeval_beval_unused_update. Qed.
Lemma beval_unused_update : ∀ X st be n,
b_unused X be →
beval (X !-> n; st) be = beval st be.
Proof. intros X st be n. apply aeval_beval_unused_update. Qed.
Lemma ideal_unused_overwrite: ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(st', ast', b', os)> →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu H.
induction H; simpl in Hu.
- (* Skip *) econstructor.
- (* Asgn *)
rewrite t_update_permute; [| tauto].
econstructor. rewrite aeval_unused_update; tauto.
- (* Seq *)
econstructor.
+ apply IHideal_eval1; tauto.
+ apply IHideal_eval2; tauto.
- (* If *)
rewrite <- beval_unused_update with (X:=X) (n:=n); [| tauto].
econstructor.
rewrite beval_unused_update; [ | tauto].
destruct ( beval st be) eqn:D; apply IHideal_eval; tauto.
- (* If_F *)
rewrite <- beval_unused_update with (X:=X) (n:=n); [| tauto].
econstructor.
rewrite beval_unused_update; [ | tauto].
destruct ( beval st be) eqn:D; apply IHideal_eval; tauto.
- (* While *)
econstructor. apply IHideal_eval. simpl; tauto.
- (* ARead *)
rewrite t_update_permute; [| tauto]. econstructor; [ | assumption].
rewrite aeval_unused_update; tauto.
- (* ARead_U *)
rewrite t_update_permute; [| tauto]. econstructor; try assumption.
rewrite aeval_unused_update; tauto.
- (* AWrite *)
econstructor; try assumption.
+ rewrite aeval_unused_update; tauto.
+ rewrite aeval_unused_update; tauto.
- (* AWrite_U *)
econstructor; try assumption.
+ rewrite aeval_unused_update; tauto.
+ rewrite aeval_unused_update; tauto.
Qed.
Lemma ideal_unused_update : ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(X !-> st X; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu Heval.
eapply ideal_unused_overwrite with (X:=X) (n:=(st X)) in Heval; [| assumption].
do 2 rewrite t_update_shadow in Heval. rewrite t_update_same in Heval. assumption.
Qed.
Lemma ideal_unused_update_rev : ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(X!-> st X; st', ast', b', os)> →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu H.
eapply ideal_unused_overwrite in H; [| eassumption].
rewrite t_update_shadow in H. eassumption.
Qed.
Definition sel_slh_ideal_prop (c: com) (ds :dirs) :Prop :=
∀ P st ast (b: bool) st' ast' b' os,
unused "b" c →
st "b" = (if b then 1 else 0) →
<(st, ast, b, ds)> =[ sel_slh P c ]=> <(st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <("b" !-> st "b"; st', ast', b', os)>.
Lemma sel_slh_ideal : ∀ c ds,
sel_slh_ideal_prop c ds.
Proof.
apply prog_size_ind. unfold sel_slh_ideal_prop.
intros c ds IH P st ast b st' ast' b' os Hunused Hstb Heval.
destruct c; simpl in *; inversion Heval; subst; clear Heval;
try (destruct (P x); discriminate).
- (* Skip *)
rewrite t_update_same. apply Ideal_Skip.
- (* Asgn *)
rewrite t_update_permute; [| tauto].
rewrite t_update_same.
constructor. reflexivity.
- (* Seq *)
eapply Ideal_Seq.
+ apply IH in H1; try tauto.
× eassumption.
× prog_size_auto.
+ apply sel_slh_flag in H1 as Hstb'0; try tauto.
apply IH in H10; try tauto.
× eapply ideal_unused_update_rev; try tauto.
× prog_size_auto.
(* IF *)
- (* non-speculative *)
destruct (beval st be) eqn:Eqnbe; inversion H10;
inversion H1; subst; clear H10; clear H1; simpl in ×.
+ apply IH in H11; try tauto.
× replace (OBranch true) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If. rewrite Eqnbe.
rewrite Eqnbe in H11. rewrite t_update_same in H11.
rewrite app_nil_r. apply H11.
× prog_size_auto.
× rewrite t_update_eq. rewrite Eqnbe. assumption.
+ (* analog to true case *)
apply IH in H11; try tauto.
× replace (OBranch false) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If. rewrite Eqnbe. rewrite Eqnbe in H11.
rewrite t_update_same in H11. rewrite app_nil_r.
apply H11.
× prog_size_auto.
× rewrite t_update_eq. rewrite Eqnbe. assumption.
- (* speculative *)
destruct (beval st be) eqn:Eqnbe; inversion H10; inversion H1;
subst; simpl in *; clear H10; clear H1; rewrite Eqnbe in H11.
+ replace (OBranch true) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If_F. rewrite Eqnbe. apply IH in H11; try tauto.
× rewrite t_update_eq in H11.
apply ideal_unused_update in H11; try tauto.
rewrite app_nil_r. apply H11.
× prog_size_auto.
+ (* analog to true case *)
replace (OBranch false) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If_F. rewrite Eqnbe. apply IH in H11; try tauto.
× rewrite t_update_eq in H11.
apply ideal_unused_update in H11; try tauto.
rewrite app_nil_r. apply H11.
× prog_size_auto.
- (* While *)
eapply Ideal_While.
inversion H1; subst; clear H1.
inversion H11; subst; clear H11; simpl in ×.
+ (* non-speculative *)
assert(Lnil: os2 = [] ∧ ds2 = []).
{ inversion H10; subst; eauto. }
destruct Lnil; subst; simpl.
apply Ideal_If.
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2; simpl in ×.
assert(Hwhile: <(st'1, ast'1, b'1, ds2)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', os2)> ).
{ simpl. replace ds2 with (ds2 ++ [])%list by (rewrite app_nil_r; reflexivity).
replace os2 with ([] ++ os2)%list by reflexivity.
eapply Spec_Seq; eassumption. }
do 2 rewrite app_nil_r. eapply Ideal_Seq.
{ rewrite Eqnbe in H13. rewrite t_update_same in H13.
apply IH in H13; try tauto.
- eassumption.
- prog_size_auto. }
{ apply IH in Hwhile; auto.
- eapply ideal_unused_update_rev; eauto.
- prog_size_auto.
- apply sel_slh_flag in H13; try tauto.
rewrite t_update_eq. rewrite Eqnbe. assumption. }
× inversion H12; subst; clear H12.
inversion H10; subst; clear H10; simpl in ×.
rewrite Eqnbe. do 2 rewrite t_update_same.
apply Ideal_Skip.
+ (* speculative; analog to non_speculative *)
assert(Lnil: os2 = [] ∧ ds2 = []).
{ inversion H10; subst; eauto. }
destruct Lnil; subst; simpl.
apply Ideal_If_F.
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H10; subst; clear H10; simpl in ×.
rewrite Eqnbe. rewrite t_update_shadow. rewrite t_update_same.
apply Ideal_Skip.
× inversion H12; subst; clear H12.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2; simpl in ×.
assert(Hwhile: <(st'1, ast'1, b'1, ds2)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', os2)> ).
{ simpl. replace ds2 with (ds2 ++ [])%list by (rewrite app_nil_r; reflexivity).
replace os2 with ([] ++ os2)%list by reflexivity.
eapply Spec_Seq; eassumption. }
do 2 rewrite app_nil_r. eapply Ideal_Seq.
{ rewrite Eqnbe in H13.
apply IH in H13; try tauto.
- rewrite t_update_eq in H13.
apply ideal_unused_update in H13; [| tauto].
eassumption.
- prog_size_auto. }
{ apply IH in Hwhile; auto.
- rewrite Eqnbe in H13.
apply IH in H13; try tauto.
+ apply ideal_unused_update_rev; eauto.
+ prog_size_auto.
- prog_size_auto.
- apply sel_slh_flag in H13; try tauto.
rewrite Eqnbe. rewrite t_update_eq. reflexivity. }
(* ARead *)
- (* Spec_ARead; public *)
destruct (P x) eqn:Heq; try discriminate H.
injection H; intros; subst; clear H.
inversion H1; clear H1; subst. repeat rewrite app_nil_r in ×.
inversion H0; clear H0; subst; simpl in ×.
× (* Ideal_ARead *)
rewrite t_update_neq; [| tauto]. rewrite Hstb.
rewrite t_update_shadow. rewrite t_update_permute; [| tauto].
rewrite t_update_eq. simpl.
rewrite <- Hstb at 1. rewrite t_update_same.
replace ((if b' then 1 else 0) =? 1)%nat with (b' && P x)
by (rewrite Heq; destruct b'; simpl; reflexivity).
eapply Ideal_ARead; eauto.
× (* Ideal_ARead_U *)
rewrite t_update_neq; [| tauto]. rewrite Hstb.
rewrite t_update_shadow. rewrite t_update_permute; [| tauto].
simpl. rewrite <- Hstb at 1. rewrite t_update_same.
replace (x !-> 0; st) with (x !-> if P x then 0 else nth i' (ast' a') 0; st)
by (rewrite Heq; reflexivity).
eapply Ideal_ARead_U; eauto.
- (* Spec_ARead; secret*)
destruct (P x) eqn:Heq; try discriminate H. inversion H; clear H; subst.
rewrite t_update_permute; [| tauto]. rewrite t_update_same.
replace (x !-> nth (aeval st i) (ast' a) 0; st)
with (x !-> if b' && P x then 0 else nth (aeval st i) (ast' a) 0; st)
by (rewrite Heq; destruct b'; reflexivity).
eapply Ideal_ARead; eauto.
- (* Spec_Read_U *)
destruct (P x) eqn:Heq; try discriminate H. inversion H; clear H; subst.
rewrite t_update_permute; [| tauto]. rewrite t_update_same.
replace (x !-> nth i' (ast' a') 0; st)
with (x !-> if P x then 0 else nth i' (ast' a') 0; st)
by (rewrite Heq; reflexivity).
eapply Ideal_ARead_U; eauto.
(* AWrite *)
- (* Spec_Write *)
rewrite t_update_same. apply Ideal_Write; tauto.
- (* Spec_Write_U *)
rewrite t_update_same. apply Ideal_Write_U; tauto.
Qed.
(∀ ae, a_unused X ae →
aeval (X !-> n; st) ae = aeval st ae) ∧
(∀ be, b_unused X be →
beval (X !-> n; st) be = beval st be).
Proof.
intros X st n. apply aexp_bexp_mutind; intros;
simpl in *; try reflexivity;
try (
rewrite H; [| tauto]; rewrite H0; [| tauto]; reflexivity
).
- rewrite t_update_neq; eauto.
- rewrite H; [| tauto]. rewrite H0; [| tauto]. rewrite H1; [| tauto].
reflexivity.
- rewrite H; auto.
Qed.
Lemma aeval_unused_update : ∀ X st ae n,
a_unused X ae →
aeval (X !-> n; st) ae = aeval st ae.
Proof. intros X st ae n. apply aeval_beval_unused_update. Qed.
Lemma beval_unused_update : ∀ X st be n,
b_unused X be →
beval (X !-> n; st) be = beval st be.
Proof. intros X st be n. apply aeval_beval_unused_update. Qed.
Lemma ideal_unused_overwrite: ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(st', ast', b', os)> →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu H.
induction H; simpl in Hu.
- (* Skip *) econstructor.
- (* Asgn *)
rewrite t_update_permute; [| tauto].
econstructor. rewrite aeval_unused_update; tauto.
- (* Seq *)
econstructor.
+ apply IHideal_eval1; tauto.
+ apply IHideal_eval2; tauto.
- (* If *)
rewrite <- beval_unused_update with (X:=X) (n:=n); [| tauto].
econstructor.
rewrite beval_unused_update; [ | tauto].
destruct ( beval st be) eqn:D; apply IHideal_eval; tauto.
- (* If_F *)
rewrite <- beval_unused_update with (X:=X) (n:=n); [| tauto].
econstructor.
rewrite beval_unused_update; [ | tauto].
destruct ( beval st be) eqn:D; apply IHideal_eval; tauto.
- (* While *)
econstructor. apply IHideal_eval. simpl; tauto.
- (* ARead *)
rewrite t_update_permute; [| tauto]. econstructor; [ | assumption].
rewrite aeval_unused_update; tauto.
- (* ARead_U *)
rewrite t_update_permute; [| tauto]. econstructor; try assumption.
rewrite aeval_unused_update; tauto.
- (* AWrite *)
econstructor; try assumption.
+ rewrite aeval_unused_update; tauto.
+ rewrite aeval_unused_update; tauto.
- (* AWrite_U *)
econstructor; try assumption.
+ rewrite aeval_unused_update; tauto.
+ rewrite aeval_unused_update; tauto.
Qed.
Lemma ideal_unused_update : ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(X !-> st X; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu Heval.
eapply ideal_unused_overwrite with (X:=X) (n:=(st X)) in Heval; [| assumption].
do 2 rewrite t_update_shadow in Heval. rewrite t_update_same in Heval. assumption.
Qed.
Lemma ideal_unused_update_rev : ∀ P st ast b ds c st' ast' b' os X n,
unused X c →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <(X!-> st X; st', ast', b', os)> →
P ⊢ <(X !-> n; st, ast, b, ds)> =[ c ]=> <(X !-> n; st', ast', b', os)>.
Proof.
intros P st ast b ds c st' ast' b' os X n Hu H.
eapply ideal_unused_overwrite in H; [| eassumption].
rewrite t_update_shadow in H. eassumption.
Qed.
Definition sel_slh_ideal_prop (c: com) (ds :dirs) :Prop :=
∀ P st ast (b: bool) st' ast' b' os,
unused "b" c →
st "b" = (if b then 1 else 0) →
<(st, ast, b, ds)> =[ sel_slh P c ]=> <(st', ast', b', os)> →
P ⊢ <(st, ast, b, ds)> =[ c ]=> <("b" !-> st "b"; st', ast', b', os)>.
Lemma sel_slh_ideal : ∀ c ds,
sel_slh_ideal_prop c ds.
Proof.
apply prog_size_ind. unfold sel_slh_ideal_prop.
intros c ds IH P st ast b st' ast' b' os Hunused Hstb Heval.
destruct c; simpl in *; inversion Heval; subst; clear Heval;
try (destruct (P x); discriminate).
- (* Skip *)
rewrite t_update_same. apply Ideal_Skip.
- (* Asgn *)
rewrite t_update_permute; [| tauto].
rewrite t_update_same.
constructor. reflexivity.
- (* Seq *)
eapply Ideal_Seq.
+ apply IH in H1; try tauto.
× eassumption.
× prog_size_auto.
+ apply sel_slh_flag in H1 as Hstb'0; try tauto.
apply IH in H10; try tauto.
× eapply ideal_unused_update_rev; try tauto.
× prog_size_auto.
(* IF *)
- (* non-speculative *)
destruct (beval st be) eqn:Eqnbe; inversion H10;
inversion H1; subst; clear H10; clear H1; simpl in ×.
+ apply IH in H11; try tauto.
× replace (OBranch true) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If. rewrite Eqnbe.
rewrite Eqnbe in H11. rewrite t_update_same in H11.
rewrite app_nil_r. apply H11.
× prog_size_auto.
× rewrite t_update_eq. rewrite Eqnbe. assumption.
+ (* analog to true case *)
apply IH in H11; try tauto.
× replace (OBranch false) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If. rewrite Eqnbe. rewrite Eqnbe in H11.
rewrite t_update_same in H11. rewrite app_nil_r.
apply H11.
× prog_size_auto.
× rewrite t_update_eq. rewrite Eqnbe. assumption.
- (* speculative *)
destruct (beval st be) eqn:Eqnbe; inversion H10; inversion H1;
subst; simpl in *; clear H10; clear H1; rewrite Eqnbe in H11.
+ replace (OBranch true) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If_F. rewrite Eqnbe. apply IH in H11; try tauto.
× rewrite t_update_eq in H11.
apply ideal_unused_update in H11; try tauto.
rewrite app_nil_r. apply H11.
× prog_size_auto.
+ (* analog to true case *)
replace (OBranch false) with (OBranch (beval st be))
by (rewrite <- Eqnbe; reflexivity).
apply Ideal_If_F. rewrite Eqnbe. apply IH in H11; try tauto.
× rewrite t_update_eq in H11.
apply ideal_unused_update in H11; try tauto.
rewrite app_nil_r. apply H11.
× prog_size_auto.
- (* While *)
eapply Ideal_While.
inversion H1; subst; clear H1.
inversion H11; subst; clear H11; simpl in ×.
+ (* non-speculative *)
assert(Lnil: os2 = [] ∧ ds2 = []).
{ inversion H10; subst; eauto. }
destruct Lnil; subst; simpl.
apply Ideal_If.
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2; simpl in ×.
assert(Hwhile: <(st'1, ast'1, b'1, ds2)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', os2)> ).
{ simpl. replace ds2 with (ds2 ++ [])%list by (rewrite app_nil_r; reflexivity).
replace os2 with ([] ++ os2)%list by reflexivity.
eapply Spec_Seq; eassumption. }
do 2 rewrite app_nil_r. eapply Ideal_Seq.
{ rewrite Eqnbe in H13. rewrite t_update_same in H13.
apply IH in H13; try tauto.
- eassumption.
- prog_size_auto. }
{ apply IH in Hwhile; auto.
- eapply ideal_unused_update_rev; eauto.
- prog_size_auto.
- apply sel_slh_flag in H13; try tauto.
rewrite t_update_eq. rewrite Eqnbe. assumption. }
× inversion H12; subst; clear H12.
inversion H10; subst; clear H10; simpl in ×.
rewrite Eqnbe. do 2 rewrite t_update_same.
apply Ideal_Skip.
+ (* speculative; analog to non_speculative *)
assert(Lnil: os2 = [] ∧ ds2 = []).
{ inversion H10; subst; eauto. }
destruct Lnil; subst; simpl.
apply Ideal_If_F.
destruct (beval st be) eqn:Eqnbe.
× inversion H12; subst; clear H12.
inversion H10; subst; clear H10; simpl in ×.
rewrite Eqnbe. rewrite t_update_shadow. rewrite t_update_same.
apply Ideal_Skip.
× inversion H12; subst; clear H12.
inversion H1; subst; clear H1.
inversion H2; subst; clear H2; simpl in ×.
assert(Hwhile: <(st'1, ast'1, b'1, ds2)>
=[ sel_slh P <{{while be do c end}}> ]=> <(st', ast', b', os2)> ).
{ simpl. replace ds2 with (ds2 ++ [])%list by (rewrite app_nil_r; reflexivity).
replace os2 with ([] ++ os2)%list by reflexivity.
eapply Spec_Seq; eassumption. }
do 2 rewrite app_nil_r. eapply Ideal_Seq.
{ rewrite Eqnbe in H13.
apply IH in H13; try tauto.
- rewrite t_update_eq in H13.
apply ideal_unused_update in H13; [| tauto].
eassumption.
- prog_size_auto. }
{ apply IH in Hwhile; auto.
- rewrite Eqnbe in H13.
apply IH in H13; try tauto.
+ apply ideal_unused_update_rev; eauto.
+ prog_size_auto.
- prog_size_auto.
- apply sel_slh_flag in H13; try tauto.
rewrite Eqnbe. rewrite t_update_eq. reflexivity. }
(* ARead *)
- (* Spec_ARead; public *)
destruct (P x) eqn:Heq; try discriminate H.
injection H; intros; subst; clear H.
inversion H1; clear H1; subst. repeat rewrite app_nil_r in ×.
inversion H0; clear H0; subst; simpl in ×.
× (* Ideal_ARead *)
rewrite t_update_neq; [| tauto]. rewrite Hstb.
rewrite t_update_shadow. rewrite t_update_permute; [| tauto].
rewrite t_update_eq. simpl.
rewrite <- Hstb at 1. rewrite t_update_same.
replace ((if b' then 1 else 0) =? 1)%nat with (b' && P x)
by (rewrite Heq; destruct b'; simpl; reflexivity).
eapply Ideal_ARead; eauto.
× (* Ideal_ARead_U *)
rewrite t_update_neq; [| tauto]. rewrite Hstb.
rewrite t_update_shadow. rewrite t_update_permute; [| tauto].
simpl. rewrite <- Hstb at 1. rewrite t_update_same.
replace (x !-> 0; st) with (x !-> if P x then 0 else nth i' (ast' a') 0; st)
by (rewrite Heq; reflexivity).
eapply Ideal_ARead_U; eauto.
- (* Spec_ARead; secret*)
destruct (P x) eqn:Heq; try discriminate H. inversion H; clear H; subst.
rewrite t_update_permute; [| tauto]. rewrite t_update_same.
replace (x !-> nth (aeval st i) (ast' a) 0; st)
with (x !-> if b' && P x then 0 else nth (aeval st i) (ast' a) 0; st)
by (rewrite Heq; destruct b'; reflexivity).
eapply Ideal_ARead; eauto.
- (* Spec_Read_U *)
destruct (P x) eqn:Heq; try discriminate H. inversion H; clear H; subst.
rewrite t_update_permute; [| tauto]. rewrite t_update_same.
replace (x !-> nth i' (ast' a') 0; st)
with (x !-> if P x then 0 else nth i' (ast' a') 0; st)
by (rewrite Heq; reflexivity).
eapply Ideal_ARead_U; eauto.
(* AWrite *)
- (* Spec_Write *)
rewrite t_update_same. apply Ideal_Write; tauto.
- (* Spec_Write_U *)
rewrite t_update_same. apply Ideal_Write_U; tauto.
Qed.
Finally, we use this to prove spec_ct_secure for sel_slh.
Theorem sel_slh_spec_ct_secure :
∀ P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
unused "b" c →
st1 "b" = 0 →
st2 "b" = 0 →
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1, false, ds)> =[ sel_slh P c ]=> <(st1', ast1', b1', os1)> →
<(st2, ast2, false, ds)> =[ sel_slh P c ]=> <(st2', ast2', b2', os2)> →
os1 = os2.
Proof.
intros P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds
Hwt Hunused Hs1b Hs2b Hequiv Haequiv Heval1 Heval2.
eapply sel_slh_ideal in Heval1; try assumption.
eapply sel_slh_ideal in Heval2; try assumption.
eapply ideal_spec_ct_secure; eauto.
Qed.
∀ P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds,
P ;; PA ⊢ct- c →
unused "b" c →
st1 "b" = 0 →
st2 "b" = 0 →
pub_equiv P st1 st2 →
pub_equiv PA ast1 ast2 →
<(st1, ast1, false, ds)> =[ sel_slh P c ]=> <(st1', ast1', b1', os1)> →
<(st2, ast2, false, ds)> =[ sel_slh P c ]=> <(st2', ast2', b2', os2)> →
os1 = os2.
Proof.
intros P PA c st1 st2 ast1 ast2 st1' st2' ast1' ast2' b1' b2' os1 os2 ds
Hwt Hunused Hs1b Hs2b Hequiv Haequiv Heval1 Heval2.
eapply sel_slh_ideal in Heval1; try assumption.
eapply sel_slh_ideal in Heval2; try assumption.
eapply ideal_spec_ct_secure; eauto.
Qed.
Since the construction of directions for proofs of examples is very time consuming,
we want to have an alternative. This alternative is an interpreter which, if it is sound
can be used to easily proof examples.
Definition prog_st : Type := state × astate × bool × dirs × obs.
Inductive output_st (A : Type): Type :=
| OST_Error : output_st A
| OST_OutOfFuel : output_st A
| OST_Finished : A → prog_st → output_st A.
Definition evaluator (A : Type): Type := prog_st → (output_st A).
Definition interpreter : Type := evaluator unit.
Definition ret {A : Type} (value : A) : evaluator A :=
fun (pst: prog_st) ⇒ OST_Finished A value pst.
Definition bind {A : Type} {B : Type} (e : evaluator A) (f : A → evaluator B): evaluator B :=
fun (pst: prog_st) ⇒
match e pst with
| OST_Finished _ value (st', ast', b', ds', os1) ⇒
match (f value) (st', ast', b', ds', os1) with
| OST_Finished _ value (st'', ast'', b'', ds'', os2) ⇒
OST_Finished B value (st'', ast'', b'', ds'', os2)
| ret ⇒ ret
end
| OST_Error _ ⇒ OST_Error B
| OST_OutOfFuel _ ⇒ OST_OutOfFuel B
end.
Notation "e >>= f" := (bind e f) (at level 58, left associativity).
Notation "e >> f" := (bind e (fun _ ⇒ f)) (at level 58, left associativity).
Inductive output_st (A : Type): Type :=
| OST_Error : output_st A
| OST_OutOfFuel : output_st A
| OST_Finished : A → prog_st → output_st A.
Definition evaluator (A : Type): Type := prog_st → (output_st A).
Definition interpreter : Type := evaluator unit.
Definition ret {A : Type} (value : A) : evaluator A :=
fun (pst: prog_st) ⇒ OST_Finished A value pst.
Definition bind {A : Type} {B : Type} (e : evaluator A) (f : A → evaluator B): evaluator B :=
fun (pst: prog_st) ⇒
match e pst with
| OST_Finished _ value (st', ast', b', ds', os1) ⇒
match (f value) (st', ast', b', ds', os1) with
| OST_Finished _ value (st'', ast'', b'', ds'', os2) ⇒
OST_Finished B value (st'', ast'', b'', ds'', os2)
| ret ⇒ ret
end
| OST_Error _ ⇒ OST_Error B
| OST_OutOfFuel _ ⇒ OST_OutOfFuel B
end.
Notation "e >>= f" := (bind e f) (at level 58, left associativity).
Notation "e >> f" := (bind e (fun _ ⇒ f)) (at level 58, left associativity).
Definition finish : interpreter := ret tt.
Definition get_var (name : string): evaluator nat :=
fun (pst : prog_st) ⇒
let
'(st, _, _, _, _) := pst
in
ret (st name) pst.
Definition set_var (name : string) (value : nat) : interpreter :=
fun (pst: prog_st) ⇒
let
'(st, ast, b, ds, os) := pst
in
let
new_st := (name !-> value; st)
in
finish (new_st, ast, b, ds, os).
Definition get_arr (name : string): evaluator (list nat) :=
fun (pst: prog_st) ⇒
let
'(_, ast, _, _, _) := pst
in
ret (ast name) pst.
Definition set_arr (name : string) (value : list nat) : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
let new_ast := (name !-> value ; ast) in
finish (st, new_ast, b, ds, os).
Definition start_speculating : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, _, ds, os) := pst in
finish (st, ast, true, ds, os).
Definition is_speculating : evaluator bool :=
fun (pst : prog_st) ⇒
let '(_, _, b, _, _) := pst in
ret b pst.
Definition eval_aexp (a : aexp) : evaluator nat :=
fun (pst: prog_st) ⇒
let '(st, _, _, _, _) := pst in
let v := aeval st a in
ret v pst.
Definition eval_bexp (be : bexp) : evaluator bool :=
fun (pst : prog_st) ⇒
let '(st, _, _, _, _) := pst in
let v := beval st be in
ret v pst.
Definition raise_error : interpreter :=
fun _ ⇒ OST_Error unit.
Definition observe (o : observation) : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
OST_Finished unit tt (st, ast, b, ds, (o :: os)%list).
Definition fetch_direction : evaluator (option direction) :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
match ds with
| d::ds' ⇒
ret (Some d) (st, ast, b, ds', os)
| [] ⇒ ret None (st, ast, b, [], os)
end.
Definition get_var (name : string): evaluator nat :=
fun (pst : prog_st) ⇒
let
'(st, _, _, _, _) := pst
in
ret (st name) pst.
Definition set_var (name : string) (value : nat) : interpreter :=
fun (pst: prog_st) ⇒
let
'(st, ast, b, ds, os) := pst
in
let
new_st := (name !-> value; st)
in
finish (new_st, ast, b, ds, os).
Definition get_arr (name : string): evaluator (list nat) :=
fun (pst: prog_st) ⇒
let
'(_, ast, _, _, _) := pst
in
ret (ast name) pst.
Definition set_arr (name : string) (value : list nat) : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
let new_ast := (name !-> value ; ast) in
finish (st, new_ast, b, ds, os).
Definition start_speculating : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, _, ds, os) := pst in
finish (st, ast, true, ds, os).
Definition is_speculating : evaluator bool :=
fun (pst : prog_st) ⇒
let '(_, _, b, _, _) := pst in
ret b pst.
Definition eval_aexp (a : aexp) : evaluator nat :=
fun (pst: prog_st) ⇒
let '(st, _, _, _, _) := pst in
let v := aeval st a in
ret v pst.
Definition eval_bexp (be : bexp) : evaluator bool :=
fun (pst : prog_st) ⇒
let '(st, _, _, _, _) := pst in
let v := beval st be in
ret v pst.
Definition raise_error : interpreter :=
fun _ ⇒ OST_Error unit.
Definition observe (o : observation) : interpreter :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
OST_Finished unit tt (st, ast, b, ds, (o :: os)%list).
Definition fetch_direction : evaluator (option direction) :=
fun (pst : prog_st) ⇒
let '(st, ast, b, ds, os) := pst in
match ds with
| d::ds' ⇒
ret (Some d) (st, ast, b, ds', os)
| [] ⇒ ret None (st, ast, b, [], os)
end.
Fixpoint spec_eval_engine_aux (fuel : nat) (c : com) : interpreter :=
match fuel with
| O ⇒ fun _ ⇒ OST_OutOfFuel unit
| S fuel ⇒
match c with
| <{ skip }> ⇒ finish
| <{ x := e }> ⇒ eval_aexp e >>= fun v ⇒ set_var x v
| <{ c1 ; c2 }> ⇒
spec_eval_engine_aux fuel c1 >>
spec_eval_engine_aux fuel c2
| <{ if be then ct else cf end }> ⇒
eval_bexp be >>= fun bool_value ⇒ observe (OBranch bool_value) >> fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if bool_value then spec_eval_engine_aux fuel ct
else spec_eval_engine_aux fuel cf
| Some DForce ⇒
start_speculating >>
if bool_value then spec_eval_engine_aux fuel cf
else spec_eval_engine_aux fuel ct
| _ ⇒ raise_error
end
| <{ while be do c end }> ⇒
spec_eval_engine_aux fuel <{if be then c; while be do c end else skip end}>
| <{ x <- a[[ie]] }> ⇒
eval_aexp ie >>= fun i ⇒ observe (OARead a i) >> get_arr a >>=
fun arr_a ⇒ is_speculating >>= fun b ⇒ fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if (i <? List.length arr_a)%nat then set_var x (nth i arr_a 0)
else raise_error
| Some (DLoad a' i') ⇒
get_arr a' >>= fun arr_a' ⇒
if negb (i <? List.length arr_a)%nat && (i' <? List.length arr_a')%nat && b then
set_var x (nth i' arr_a' 0)
else raise_error
| _ ⇒ raise_error
end
| <{ a[ie] <- e }> ⇒
eval_aexp ie >>= fun i ⇒ observe (OAWrite a i) >> get_arr a >>=
fun arr_a ⇒ eval_aexp e >>= fun n ⇒ is_speculating >>= fun b ⇒ fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if (i <? List.length arr_a)%nat then set_arr a (upd i arr_a n)
else raise_error
| Some (DStore a' i') ⇒
get_arr a' >>= fun arr_a' ⇒
if negb (i <? List.length arr_a)%nat && (i' <? List.length arr_a')%nat && b then
set_arr a' (upd i' arr_a' n)
else raise_error
| _ ⇒ raise_error
end
end
end.
(* In principle, could also define spec_eval_engine without fuel,
but in practice it's quite complicated: *)
(* Program Fixpoint spec_eval_engine_aux (fuel : nat) (c : com) (ds : dirs) : *)
(* state * astate * bool -> ds':dirs{length ds' <= length ds} * output_st {measure (com_size c + length ds)} *)
(* ... *)
(* | <{ c1 ; c2 }> => *)
(* let '(ds', k) := spec_eval_engine_aux ds c1 in *)
(* k >> spec_eval_engine_aux ds' c2 *)
Definition compute_fuel (c :com) (ds :dirs) :=
match ds with
| [] ⇒ com_size c
| _ ⇒ length ds × com_size c
end.
Definition spec_eval_engine (c : com) (st : state) (ast : astate) (b : bool) (ds : dirs)
: option (state × astate × bool × obs) :=
match spec_eval_engine_aux (compute_fuel c ds) c (st, ast, b, ds, []) with
| OST_Finished _ _ (st', ast', b', ds', os) ⇒
if ((length ds') =? 0)%nat then Some (st', ast', b', os)
else None
| _ ⇒ None
end.
match fuel with
| O ⇒ fun _ ⇒ OST_OutOfFuel unit
| S fuel ⇒
match c with
| <{ skip }> ⇒ finish
| <{ x := e }> ⇒ eval_aexp e >>= fun v ⇒ set_var x v
| <{ c1 ; c2 }> ⇒
spec_eval_engine_aux fuel c1 >>
spec_eval_engine_aux fuel c2
| <{ if be then ct else cf end }> ⇒
eval_bexp be >>= fun bool_value ⇒ observe (OBranch bool_value) >> fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if bool_value then spec_eval_engine_aux fuel ct
else spec_eval_engine_aux fuel cf
| Some DForce ⇒
start_speculating >>
if bool_value then spec_eval_engine_aux fuel cf
else spec_eval_engine_aux fuel ct
| _ ⇒ raise_error
end
| <{ while be do c end }> ⇒
spec_eval_engine_aux fuel <{if be then c; while be do c end else skip end}>
| <{ x <- a[[ie]] }> ⇒
eval_aexp ie >>= fun i ⇒ observe (OARead a i) >> get_arr a >>=
fun arr_a ⇒ is_speculating >>= fun b ⇒ fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if (i <? List.length arr_a)%nat then set_var x (nth i arr_a 0)
else raise_error
| Some (DLoad a' i') ⇒
get_arr a' >>= fun arr_a' ⇒
if negb (i <? List.length arr_a)%nat && (i' <? List.length arr_a')%nat && b then
set_var x (nth i' arr_a' 0)
else raise_error
| _ ⇒ raise_error
end
| <{ a[ie] <- e }> ⇒
eval_aexp ie >>= fun i ⇒ observe (OAWrite a i) >> get_arr a >>=
fun arr_a ⇒ eval_aexp e >>= fun n ⇒ is_speculating >>= fun b ⇒ fetch_direction >>=
fun dop ⇒
match dop with
| Some DStep ⇒
if (i <? List.length arr_a)%nat then set_arr a (upd i arr_a n)
else raise_error
| Some (DStore a' i') ⇒
get_arr a' >>= fun arr_a' ⇒
if negb (i <? List.length arr_a)%nat && (i' <? List.length arr_a')%nat && b then
set_arr a' (upd i' arr_a' n)
else raise_error
| _ ⇒ raise_error
end
end
end.
(* In principle, could also define spec_eval_engine without fuel,
but in practice it's quite complicated: *)
(* Program Fixpoint spec_eval_engine_aux (fuel : nat) (c : com) (ds : dirs) : *)
(* state * astate * bool -> ds':dirs{length ds' <= length ds} * output_st {measure (com_size c + length ds)} *)
(* ... *)
(* | <{ c1 ; c2 }> => *)
(* let '(ds', k) := spec_eval_engine_aux ds c1 in *)
(* k >> spec_eval_engine_aux ds' c2 *)
Definition compute_fuel (c :com) (ds :dirs) :=
match ds with
| [] ⇒ com_size c
| _ ⇒ length ds × com_size c
end.
Definition spec_eval_engine (c : com) (st : state) (ast : astate) (b : bool) (ds : dirs)
: option (state × astate × bool × obs) :=
match spec_eval_engine_aux (compute_fuel c ds) c (st, ast, b, ds, []) with
| OST_Finished _ _ (st', ast', b', ds', os) ⇒
if ((length ds') =? 0)%nat then Some (st', ast', b', os)
else None
| _ ⇒ None
end.
Lemma ltb_reflect : ∀ n m :nat,
reflect (n < m) (n <? m)%nat.
Proof.
intros n m. apply iff_reflect. rewrite ltb_lt. reflexivity.
Qed.
Lemma eqb_reflect: ∀ n m :nat,
reflect (n = m ) (n =? m)%nat.
Proof.
intros n m. apply iff_reflect. rewrite eqb_eq. reflexivity.
Qed.
Lemma spec_eval_engine_aux_sound : ∀ n c st ast b ds os st' ast' b' ds' os' u,
spec_eval_engine_aux n c (st, ast, b, ds, os)
= OST_Finished unit u (st', ast', b', ds', os') →
(∃ dsn osn,
(dsn++ds')%list = ds ∧ (osn++os)%list = os' ∧
<(st, ast, b, dsn)> =[ c ]=> <(st', ast', b', osn)> ).
Proof.
induction n as [| n' IH]; intros c st ast b ds os st' ast' b' ds' os' u Haux;
simpl in Haux; [discriminate |].
destruct c as [| X e | c1 c2 | be ct cf | be cw | X a ie | a ie e ] eqn:Eqnc;
unfold ">>=" in Haux; simpl in Haux.
- (* Skip *)
inversion Haux; subst.
∃ []; ∃ []; split;[| split]; try reflexivity.
apply Spec_Skip.
- (* Asgn *)
simpl in Haux. inversion Haux; subst.
∃ []; ∃ []; split;[| split]; try reflexivity.
apply Spec_Asgn. reflexivity.
- destruct (spec_eval_engine_aux _ c1 _) eqn:Hc1;
try discriminate; simpl in Haux.
destruct p as [ [ [ [stm astm] bm] dsm] osm]; simpl in Haux.
destruct (spec_eval_engine_aux _ c2 _) eqn:Hc2;
try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
apply IH in Hc1. destruct Hc1 as [ds1 [ os1 [Hds1 [Hos1 Heval1] ] ] ].
apply IH in Hc2. destruct Hc2 as [ds2 [ os2 [Hds2 [Hos2 Heval2] ] ] ].
inversion Haux; subst. ∃ (ds1++ds2)%list; ∃ (os2++os1)%list;
split; [| split].
+ rewrite <- app_assoc. reflexivity.
+ rewrite <- app_assoc. reflexivity.
+ eapply Spec_Seq; eauto.
- (* IF *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct (beval st be) eqn:Eqnbe.
× destruct (spec_eval_engine_aux _ ct _ ) eqn:Hct; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hct.
destruct Hct as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DStep :: dst); ∃ (ost++[OBranch true])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If. rewrite Eqnbe. apply Heval. }
× destruct (spec_eval_engine_aux _ cf _ ) eqn:Hcf; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hcf.
destruct Hcf as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DStep :: dst); ∃ (ost++[OBranch false])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If. rewrite Eqnbe. apply Heval. }
+ (* DForce *)
destruct (beval st be) eqn:Eqnbe.
× destruct (spec_eval_engine_aux _ cf _ ) eqn:Hcf; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hcf.
destruct Hcf as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DForce :: dst); ∃ (ost++[OBranch true])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If_F. rewrite Eqnbe. apply Heval. }
× destruct (spec_eval_engine_aux _ ct _ ) eqn:Hct; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hct.
destruct Hct as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DForce :: dst); ∃ (ost++[OBranch false])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If_F. rewrite Eqnbe. apply Heval. }
- (* While *)
apply IH in Haux. destruct Haux as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ dst; ∃ ost; split; [| split]; eauto.
apply Spec_While. apply Heval.
- (* ARead *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct (aeval st ie <? Datatypes.length (ast a))%nat eqn:Eqnindex; try discriminate.
destruct (observe (OARead a (aeval st ie)) (st, ast, b, ds_tl, os)) eqn:Eqbobs; try discriminate;
simpl in Haux. inversion Haux; subst.
eexists [DStep]; eexists [OARead a (aeval st ie)]; split;[| split]; try reflexivity.
eapply Spec_ARead; eauto. destruct (ltb_reflect (aeval st ie) (length (ast' a))) as [Hlt | Hgeq].
× apply Hlt.
× discriminate.
+ (* DForce *)
destruct (negb (aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex1;
destruct ((i <? Datatypes.length (ast a0))%nat) eqn:Eqnindex2;
destruct b eqn:Eqnb; try discriminate; simpl in Haux. inversion Haux; subst.
eexists [DLoad a0 i ]; eexists [OARead a (aeval st ie)]; split;[| split]; try reflexivity.
eapply Spec_ARead_U; eauto.
× destruct (ltb_reflect (aeval st ie) (length (ast' a))) as [Hlt | Hgeq].
{ discriminate. }
{ apply not_lt in Hgeq. apply Hgeq. }
× destruct (ltb_reflect i (length (ast' a0))) as [Hlt | Hgeq].
{ apply Hlt. }
{ discriminate. }
- (* AWrite *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct ((aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex; try discriminate.
destruct (observe (OAWrite a (aeval st ie)) (st, ast, b, ds_tl, os)) eqn:Eqbobs; try discriminate;
simpl in Haux. inversion Haux; subst.
eexists [DStep]; eexists [OAWrite a (aeval st' ie)]; split;[| split]; try reflexivity.
eapply Spec_Write; eauto. destruct (ltb_reflect (aeval st' ie) (length (ast a))) as [Hlt | Hgeq].
× apply Hlt.
× discriminate.
+ (* DForce *)
destruct (negb (aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex1;
destruct (i <? Datatypes.length (ast a0))%nat eqn:Eqnindex2;
destruct b eqn:Eqnb; try discriminate; simpl in Haux. inversion Haux; subst.
eexists [DStore a0 i]; eexists [OAWrite a (aeval st' ie)]; split;[| split]; try reflexivity.
eapply Spec_Write_U; eauto.
× destruct (ltb_reflect (aeval st' ie) (length (ast a))) as [Hlt | Hgeq].
{ discriminate. }
{ apply not_lt in Hgeq. apply Hgeq. }
× destruct (ltb_reflect i (length (ast a0))) as [Hlt | Hgeq].
{ apply Hlt. }
{ discriminate. }
Qed.
Theorem spec_eval_engine_sound: ∀ c st ast b ds st' ast' b' os',
spec_eval_engine c st ast b ds = Some (st', ast', b', os') →
<(st, ast, b, ds)> =[ c ]=> <(st', ast', b', os')> .
Proof.
intros c st ast b ds st' ast' b' os' Hengine.
unfold spec_eval_engine in Hengine.
destruct (spec_eval_engine_aux _ c _) eqn:Eqnaux;
try discriminate. destruct p as [ [ [ [stt astt] bt] dst] ost].
destruct ((Datatypes.length dst =? 0)%nat) eqn:Eqnds; try discriminate.
apply spec_eval_engine_aux_sound in Eqnaux.
destruct Eqnaux as [dsn [osn [Hdsn [Hosn Heval] ] ] ].
inversion Hengine; subst. rewrite app_nil_r.
destruct (eqb_reflect (length dst) 0) as [Heq | Hneq].
+ apply length_zero_iff_nil in Heq. rewrite Heq. rewrite app_nil_r. apply Heval.
+ discriminate.
Qed.
Definition spec_insecure_prog_2 :=
<{{ X := 0;
Y := 0;
while Y ≤ 2 do
Z <- AP[[Y]];
X := X + Z;
Y := Y + 1
end;
if X ≤ 42 then W := 1 else W := 0 end }}> .
Example spec_insecure_prog_2_is_ct_and_spec_insecure :
∃ P PA,
P ;; PA ⊢ct- spec_insecure_prog_2 ∧ ¬ (spec_ct_secure P PA spec_insecure_prog_2) .
Proof.
∃ (X!-> public; Y!-> public; Z!-> public; _ !-> secret).
∃ (AP!-> public; AS!-> secret; _ !-> public).
split; unfold spec_insecure_prog.
- repeat econstructor;
replace (public) with (join public public) at 4 by reflexivity;
repeat constructor.
- remember (_ !-> 0) as st.
remember (AP!-> [1;2;3]; AS!-> [40;41;42;43]; _ !-> []) as ast1.
remember (AP!-> [1;2;3]; AS!-> [4;5;6;7]; _ !-> []) as ast2.
remember ([DStep; DStep; DStep; DStep; DStep; DStep; DForce; DLoad AS 3; DStep; DStep]) as ds.
intros Hsecure.
assert (L: ∃ stt1 astt1 bt1 os1 stt2 astt2 bt2 os2,
<(st, ast1, false, ds )> =[ spec_insecure_prog_2 ]=> <( stt1, astt1, bt1, os1)> ∧
<(st, ast2, false, ds )> =[ spec_insecure_prog_2 ]=> <( stt2, astt2, bt2, os2)> ∧
os1 ≠ os2 ).
{ eexists; eexists; eexists; eexists; eexists; eexists; eexists; eexists.
split; [| split].
- apply spec_eval_engine_sound. unfold spec_insecure_prog_2, spec_eval_engine;
subst; simpl; reflexivity.
- apply spec_eval_engine_sound. unfold spec_insecure_prog_2, spec_eval_engine;
subst; simpl; reflexivity.
- intros Contra; inversion Contra. }
destruct L as [stt1 [astt1 [bt1 [os1 [stt2 [astt2 [bt2 [os2 [Heval1 [Heval2 Hneq] ] ] ] ] ] ] ] ] ].
eapply Hsecure in Heval1; eauto.
+ apply pub_equiv_refl.
+ intros x Hx. destruct (String.eqb_spec "AP" x) as [HeqAP | HneqAP];
destruct (String.eqb_spec "AS" x) as [HeqAS | HneqAS].
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. rewrite t_update_neq in Hx; [| assumption].
rewrite t_update_eq in Hx. discriminate.
× subst. do 4 (rewrite t_update_neq; [| assumption]). reflexivity.
Qed.
End SpecCTInterpreter.
(* 2025-01-29 15:13 *)
reflect (n < m) (n <? m)%nat.
Proof.
intros n m. apply iff_reflect. rewrite ltb_lt. reflexivity.
Qed.
Lemma eqb_reflect: ∀ n m :nat,
reflect (n = m ) (n =? m)%nat.
Proof.
intros n m. apply iff_reflect. rewrite eqb_eq. reflexivity.
Qed.
Lemma spec_eval_engine_aux_sound : ∀ n c st ast b ds os st' ast' b' ds' os' u,
spec_eval_engine_aux n c (st, ast, b, ds, os)
= OST_Finished unit u (st', ast', b', ds', os') →
(∃ dsn osn,
(dsn++ds')%list = ds ∧ (osn++os)%list = os' ∧
<(st, ast, b, dsn)> =[ c ]=> <(st', ast', b', osn)> ).
Proof.
induction n as [| n' IH]; intros c st ast b ds os st' ast' b' ds' os' u Haux;
simpl in Haux; [discriminate |].
destruct c as [| X e | c1 c2 | be ct cf | be cw | X a ie | a ie e ] eqn:Eqnc;
unfold ">>=" in Haux; simpl in Haux.
- (* Skip *)
inversion Haux; subst.
∃ []; ∃ []; split;[| split]; try reflexivity.
apply Spec_Skip.
- (* Asgn *)
simpl in Haux. inversion Haux; subst.
∃ []; ∃ []; split;[| split]; try reflexivity.
apply Spec_Asgn. reflexivity.
- destruct (spec_eval_engine_aux _ c1 _) eqn:Hc1;
try discriminate; simpl in Haux.
destruct p as [ [ [ [stm astm] bm] dsm] osm]; simpl in Haux.
destruct (spec_eval_engine_aux _ c2 _) eqn:Hc2;
try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
apply IH in Hc1. destruct Hc1 as [ds1 [ os1 [Hds1 [Hos1 Heval1] ] ] ].
apply IH in Hc2. destruct Hc2 as [ds2 [ os2 [Hds2 [Hos2 Heval2] ] ] ].
inversion Haux; subst. ∃ (ds1++ds2)%list; ∃ (os2++os1)%list;
split; [| split].
+ rewrite <- app_assoc. reflexivity.
+ rewrite <- app_assoc. reflexivity.
+ eapply Spec_Seq; eauto.
- (* IF *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct (beval st be) eqn:Eqnbe.
× destruct (spec_eval_engine_aux _ ct _ ) eqn:Hct; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hct.
destruct Hct as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DStep :: dst); ∃ (ost++[OBranch true])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If. rewrite Eqnbe. apply Heval. }
× destruct (spec_eval_engine_aux _ cf _ ) eqn:Hcf; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hcf.
destruct Hcf as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DStep :: dst); ∃ (ost++[OBranch false])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If. rewrite Eqnbe. apply Heval. }
+ (* DForce *)
destruct (beval st be) eqn:Eqnbe.
× destruct (spec_eval_engine_aux _ cf _ ) eqn:Hcf; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hcf.
destruct Hcf as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DForce :: dst); ∃ (ost++[OBranch true])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If_F. rewrite Eqnbe. apply Heval. }
× destruct (spec_eval_engine_aux _ ct _ ) eqn:Hct; try discriminate; simpl in Haux.
destruct p as [ [ [ [stt astt] bt] dst] ost]; simpl in Haux.
inversion Haux; subst. apply IH in Hct.
destruct Hct as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ (DForce :: dst); ∃ (ost++[OBranch false])%list; split;[| split].
{ simpl. rewrite Hds. reflexivity. }
{ rewrite <- app_assoc. simpl. rewrite Hos. reflexivity. }
{ rewrite <- Eqnbe. apply Spec_If_F. rewrite Eqnbe. apply Heval. }
- (* While *)
apply IH in Haux. destruct Haux as [dst [ ost [Hds [Hos Heval] ] ] ].
∃ dst; ∃ ost; split; [| split]; eauto.
apply Spec_While. apply Heval.
- (* ARead *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct (aeval st ie <? Datatypes.length (ast a))%nat eqn:Eqnindex; try discriminate.
destruct (observe (OARead a (aeval st ie)) (st, ast, b, ds_tl, os)) eqn:Eqbobs; try discriminate;
simpl in Haux. inversion Haux; subst.
eexists [DStep]; eexists [OARead a (aeval st ie)]; split;[| split]; try reflexivity.
eapply Spec_ARead; eauto. destruct (ltb_reflect (aeval st ie) (length (ast' a))) as [Hlt | Hgeq].
× apply Hlt.
× discriminate.
+ (* DForce *)
destruct (negb (aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex1;
destruct ((i <? Datatypes.length (ast a0))%nat) eqn:Eqnindex2;
destruct b eqn:Eqnb; try discriminate; simpl in Haux. inversion Haux; subst.
eexists [DLoad a0 i ]; eexists [OARead a (aeval st ie)]; split;[| split]; try reflexivity.
eapply Spec_ARead_U; eauto.
× destruct (ltb_reflect (aeval st ie) (length (ast' a))) as [Hlt | Hgeq].
{ discriminate. }
{ apply not_lt in Hgeq. apply Hgeq. }
× destruct (ltb_reflect i (length (ast' a0))) as [Hlt | Hgeq].
{ apply Hlt. }
{ discriminate. }
- (* AWrite *)
destruct ds as [| d ds_tl] eqn:Eqnds; simpl in Haux; try discriminate.
destruct d eqn:Eqnd; try discriminate; simpl in Haux.
+ (* DStep *)
destruct ((aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex; try discriminate.
destruct (observe (OAWrite a (aeval st ie)) (st, ast, b, ds_tl, os)) eqn:Eqbobs; try discriminate;
simpl in Haux. inversion Haux; subst.
eexists [DStep]; eexists [OAWrite a (aeval st' ie)]; split;[| split]; try reflexivity.
eapply Spec_Write; eauto. destruct (ltb_reflect (aeval st' ie) (length (ast a))) as [Hlt | Hgeq].
× apply Hlt.
× discriminate.
+ (* DForce *)
destruct (negb (aeval st ie <? Datatypes.length (ast a))%nat) eqn:Eqnindex1;
destruct (i <? Datatypes.length (ast a0))%nat eqn:Eqnindex2;
destruct b eqn:Eqnb; try discriminate; simpl in Haux. inversion Haux; subst.
eexists [DStore a0 i]; eexists [OAWrite a (aeval st' ie)]; split;[| split]; try reflexivity.
eapply Spec_Write_U; eauto.
× destruct (ltb_reflect (aeval st' ie) (length (ast a))) as [Hlt | Hgeq].
{ discriminate. }
{ apply not_lt in Hgeq. apply Hgeq. }
× destruct (ltb_reflect i (length (ast a0))) as [Hlt | Hgeq].
{ apply Hlt. }
{ discriminate. }
Qed.
Theorem spec_eval_engine_sound: ∀ c st ast b ds st' ast' b' os',
spec_eval_engine c st ast b ds = Some (st', ast', b', os') →
<(st, ast, b, ds)> =[ c ]=> <(st', ast', b', os')> .
Proof.
intros c st ast b ds st' ast' b' os' Hengine.
unfold spec_eval_engine in Hengine.
destruct (spec_eval_engine_aux _ c _) eqn:Eqnaux;
try discriminate. destruct p as [ [ [ [stt astt] bt] dst] ost].
destruct ((Datatypes.length dst =? 0)%nat) eqn:Eqnds; try discriminate.
apply spec_eval_engine_aux_sound in Eqnaux.
destruct Eqnaux as [dsn [osn [Hdsn [Hosn Heval] ] ] ].
inversion Hengine; subst. rewrite app_nil_r.
destruct (eqb_reflect (length dst) 0) as [Heq | Hneq].
+ apply length_zero_iff_nil in Heq. rewrite Heq. rewrite app_nil_r. apply Heval.
+ discriminate.
Qed.
Definition spec_insecure_prog_2 :=
<{{ X := 0;
Y := 0;
while Y ≤ 2 do
Z <- AP[[Y]];
X := X + Z;
Y := Y + 1
end;
if X ≤ 42 then W := 1 else W := 0 end }}> .
Example spec_insecure_prog_2_is_ct_and_spec_insecure :
∃ P PA,
P ;; PA ⊢ct- spec_insecure_prog_2 ∧ ¬ (spec_ct_secure P PA spec_insecure_prog_2) .
Proof.
∃ (X!-> public; Y!-> public; Z!-> public; _ !-> secret).
∃ (AP!-> public; AS!-> secret; _ !-> public).
split; unfold spec_insecure_prog.
- repeat econstructor;
replace (public) with (join public public) at 4 by reflexivity;
repeat constructor.
- remember (_ !-> 0) as st.
remember (AP!-> [1;2;3]; AS!-> [40;41;42;43]; _ !-> []) as ast1.
remember (AP!-> [1;2;3]; AS!-> [4;5;6;7]; _ !-> []) as ast2.
remember ([DStep; DStep; DStep; DStep; DStep; DStep; DForce; DLoad AS 3; DStep; DStep]) as ds.
intros Hsecure.
assert (L: ∃ stt1 astt1 bt1 os1 stt2 astt2 bt2 os2,
<(st, ast1, false, ds )> =[ spec_insecure_prog_2 ]=> <( stt1, astt1, bt1, os1)> ∧
<(st, ast2, false, ds )> =[ spec_insecure_prog_2 ]=> <( stt2, astt2, bt2, os2)> ∧
os1 ≠ os2 ).
{ eexists; eexists; eexists; eexists; eexists; eexists; eexists; eexists.
split; [| split].
- apply spec_eval_engine_sound. unfold spec_insecure_prog_2, spec_eval_engine;
subst; simpl; reflexivity.
- apply spec_eval_engine_sound. unfold spec_insecure_prog_2, spec_eval_engine;
subst; simpl; reflexivity.
- intros Contra; inversion Contra. }
destruct L as [stt1 [astt1 [bt1 [os1 [stt2 [astt2 [bt2 [os2 [Heval1 [Heval2 Hneq] ] ] ] ] ] ] ] ] ].
eapply Hsecure in Heval1; eauto.
+ apply pub_equiv_refl.
+ intros x Hx. destruct (String.eqb_spec "AP" x) as [HeqAP | HneqAP];
destruct (String.eqb_spec "AS" x) as [HeqAS | HneqAS].
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. do 2 rewrite t_update_eq. reflexivity.
× subst. rewrite t_update_neq in Hx; [| assumption].
rewrite t_update_eq in Hx. discriminate.
× subst. do 4 (rewrite t_update_neq; [| assumption]). reflexivity.
Qed.
End SpecCTInterpreter.
(* 2025-01-29 15:13 *)